A global spectral study of black hole X‐ray binaries

AIM – Unité Mixte de Recherche CEA – CNRS – Université Paris VII – UMR 7158, CEA-Saclay, Service d'Astrophysique, F-91191 Gif-sur-Yvette Cedex, France
Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 02/2010; 403(1):61 - 82. DOI: 10.1111/j.1365-2966.2010.16114.x
Source: arXiv

ABSTRACT We report on a consistent and comprehensive spectral analysis of the X-ray emission of 25 black hole X-ray binaries. All publicly available observations of the black hole binaries in the RXTE archive were analysed. Three different types of model were fitted to investigate the spectral changes occurring during an outburst. For the population, as well as for each binary and each outburst from each binary, we construct two diagnostic diagrams. The hardness intensity/luminosity diagram (HID/HLD), the X-ray colour against the flux/luminosity of the binary, is most useful when studying a single binary. However, to compare different binary systems, the disc fraction luminosity diagram (DFLD) is more useful. The DFLD uses the luminosities of the disc and power-law components to calculate the ratio of the disc luminosity to the total luminosity, resulting in a more physical value, which is analogous to the X-ray colour calculated for X-ray binaries. The tracks of the outbursts populate the DFLD more evenly than the HLD. We discuss the limitations of both diagnostic diagrams for the study of the X-ray binary outbursts and clearly illustrate how the two diagrams map on to each other for real outburst data. The similarity of the X-ray colour and disc fraction behaviour over time during an outburst originally seen in GX 339−4 data is seen in other sources' outbursts. We extract the peak luminosities in a single outburst, as well as the luminosities at the transitions away from and returning to the power-law-dominated state for each outburst. The distribution of the luminosities at the transition from the power-law to the disc-dominated state peaks at around 0.3LEdd, the same as the peak of the distribution of the peak luminosities in an outburst. Using the disc fraction to calculate the transition luminosities shows that the distributions of the luminosities for the transitions away from and returning to the power-law-dominated state are both broad and appear to overlap. Using the change in disc fraction to calculate the date when a transition occurred is not drastically different from obtaining the dates from changes in the timing behaviour of the X-ray binary. In addition, we calculate the rate of motion of an X-ray binary through the DFLD during an outburst, a diagnostic which has the potential to be used as a comparison with populations of active galactic nuclei. The fastest rate of motion is on the egress and ingress from the power-law-dominated state. A further region of increased speed through the diagram occurs in the disc-dominated state on the return to the power-law-dominated state. Finally, we compare the measured X-ray luminosities with a small number of contemporaneous radio measurements. Overall, this is the most comprehensive and uniform global study of black hole X-ray binaries to date.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR dataset, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and VLBA monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within 100" of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy - dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs - falls steeply (photon index >~ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the {\gamma}-ray emission detected with Fermi and H.E.S.S. If NGC 253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is < 1%.
    The Astrophysical Journal 11/2014; 797(2). DOI:10.1088/0004-637X/797/2/79 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 hrs at 5.3 GHz, yielding a 4.8 \pm 1.4 microJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4-8E+25 erg/s, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2E-14 erg/s/cm^2 (1-10 keV), corresponding to an Eddington ratio of ~4E-9 for a 7.5 solar mass black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form ellr=alpha+beta*ellx (where ell denotes logarithmic luminosities), with beta=0.72\pm0.09. XTE J1118+480 is thus the third system, together with GX339-4 and V404 Cyg, for which a tight, non-linear radio/X-ray correlation has been reported over more than 5 dex in ellx. We then perform a clustering and linear regression analysis on what is arguably the most up-to-date collection of coordinated radio and X-ray luminosity measurements from quiescent and hard state black hole X-ray binaries, including 24 systems. At variance with previous results, a two-cluster description is statistically preferred only for random errors <=0.3 dex in both ellr and ellx, a level which we argue can be easily reached when the known spectral shape/distance uncertainties and intrinsic variability are accounted for. A linear regression analysis performed on the whole data set returns a best-fitting slope beta=0.61\pm0.03 and intrinsic scatter sigma_0=0.31\pm 0.03 dex.
    Monthly Notices of the Royal Astronomical Society 08/2014; 445(1). DOI:10.1093/mnras/stu1599 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Timing of high-count rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count-rates rather than for timing analysis of bright objects. The instrumental dead time per event is relatively long (~2.5 msec), and varies by a few percent event-to-event. The most obvious effect is a distortion of the white noise level in the power density spectrum (PDS) that cannot be modeled easily with the standard techniques due to the variable nature of the dead time. In this paper, we show that it is possible to exploit the presence of two completely independent focal planes and use the cross power density spectrum to obtain a good proxy of the white noise-subtracted PDS. Thereafter, one can use a Monte Carlo approach to estimate the remaining effects of dead time, namely a frequency-dependent modulation of the variance and a frequency-independent drop of the sensitivity to variability. In this way, most of the standard timing analysis can be performed, albeit with a sacrifice in signal to noise relative to what would be achieved using more standard techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1 and GRS 1915+105.
    The Astrophysical Journal 09/2014; 800(2). DOI:10.1088/0004-637X/800/2/109 · 6.28 Impact Factor


Available from