Effects of heterogeneous interaction strengths on food web complexity

Oikos (Impact Factor: 3.33). 01/2008; 117(3):336 - 343. DOI: 10.1111/j.2007.0030-1299.16261.x

ABSTRACT Using a bioenergetic model we show that the pattern of foraging preferences greatly determines the complexity of the resulting food webs. By complexity we refer to the degree of richness of food-web architecture, measured in terms of some topological indicators (number of persistent species and links, connectance, link density, number of trophic levels, and frequency of weak links). The poorest food-web architecture is found for a mean-field scenario where all foraging preferences are assumed to be the same. Richer food webs appear when foraging preferences depend on the trophic position of species. Food-web complexity increases with the number of basal species. We also find a strong correlation between the complexity of a trophic module and the complexity of entire food webs with the same pattern of foraging preferences.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global change has created a severe biodiversity crisis. Species are driven extinct at an increasing rate, and this has the potential to cause further coextinction cascades. The rate and shape of these coextinction cascades depend very much on the structure of the networks of interactions across species. Understanding network structure and how it relates to network disassembly, therefore, is a priority for system-level conservation biology. This process of network collapse may indeed be related to the process of network build-up, although very little is known about both processes and even less about their relationship. Here we review recent work that provides some preliminary answers to these questions. First, we focus on network assembly by emphasizing temporal processes at the species level, as well as the structural building blocks of complex ecological networks. Second, we focus on network disassembly as a consequence of species extinctions or habitat loss. We conclude by emphasizing some general rules of thumb that can help in building a comprehensive framework to understand the responses of ecological networks to global change.
    Philosophical Transactions of The Royal Society B Biological Sciences 07/2009; 364(1524):1781-7. · 6.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding food-web persistence is an important long-term objective of ecology because of its relevance in maintaining biodiversity. To date, many dynamic studies of food-web behaviour--both empirical and theoretical--have focused on smaller sub-webs, called trophic modules, because these modules are more tractable experimentally and analytically than whole food webs. The question remains to what degree studies of trophic modules are relevant to infer the persistence of entire food webs. Four trophic modules have received particular attention in the literature: tri-trophic food chains, omnivory, exploitative competition, and apparent competition. Here, we integrate analysis of these modules' dynamics in isolation with those of whole food webs to directly assess the appropriateness of scaling from modules to food webs. We find that there is not a direct, one-to-one, relationship between the relative persistence of modules in isolation and their effect on persistence of an entire food web. Nevertheless, we observe that those modules which are most commonly found in empirical food webs are those that confer the greatest community persistence. As a consequence, we demonstrate that there may be significant dynamic justifications for empirically-observed food-web structure.
    Ecology Letters 11/2009; 13(2):154-61. · 17.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many analyses of ecological networks in recent years have introduced new indices to describe network properties. As a consequence, tens of indices are available to address similar questions, differing in specific detail, sensitivity in detecting the property in question, and robustness with respect to network size and sampling intensity. Furthermore, some indices merely reflect the number of species participating in a network, but not their interrelationship, requiring a null model approach. Here we introduce a new, free software calculating a large spectrum of network indices, visualizing bipartite networks and generating null models. We use this tool to explore the sensitivity of 26 network indices to network dimensions, sampling intensity and singleton observations. Based on observed data, we investigate the interrelationship of these indices, and show that they are highly correlated, and heavily influenced by network dimensions and connectance. Finally, we re-evaluate five common hypotheses about network properties, comparing 19 pollination networks with three differently complex null models: 1. The number of links per species ("degree") follow (truncated) power law distributions. 2. Generalist pollinators interact with specialist plants, and vice versa (dependence asymmetry). 3. Ecological networks are nested. 4. Pollinators display complementarity, owing to specialization within the network. 5. Plant-pollinator networks are more robust to extinction than random networks. Our results indicate that while some hypotheses hold up against our null models, others are to a large extent understandable on the basis of network size, rather than ecological interrelationships. In particular, null model pattern of dependence asymmetry and robustness to extinction are opposite to what current network paradigms suggest. Our analysis, and the tools we provide, enables ecologists to readily contrast their findings with null model expectations for many different questions, thus separating statistical inevitability from ecological process.
    The Open Ecology Journal. 01/2009; 2(1).


Available from
May 16, 2014