MAPK/ERK signalling mediates VEGF‐induced bone marrow stem cell differentiation into endothelial cell

Journal of Cellular and Molecular Medicine (Impact Factor: 3.7). 02/2008; 12(6a):2395 - 2406. DOI: 10.1111/j.1582-4934.2008.00266.x

ABSTRACT Multi-potent adult progenitor cells (MAPCs) differentiate into endothelial cells (ECs) in the presence of vascular endothelial growth factor (VEGF). The mechanism(s) of VEGF-induced differentiation of MAPCs to ECs are not yet known. We, therefore, examined the role of mitogen-activated protein kinase/extracellular signal-regulated kinase (p42/44-MAPK/ERK1/2) signalling in endothelial differentiation from bone marrow stem cells. We observed that VEGF stimulation of MAPCs for 14 days results in a significant expression of endothelial-specific gene and/or proteins including von Willebrand factor (vWF), vascular endothelial-cadherin (VE-cadherin), VEGF receptor-2 (VEGFR2), and CD31. Up-regulation of EC-specific markers was accompanied by a cobblestone morphology, expression of endothelial nitric oxide synthase (eNOS), and Dil-Ac-LDL uptake, typical for EC morphology and function. VEGF induced a sustained activation of p42 MAPK/ERK, but not that of p44 MAPK/ERK during the course of MAPCs differentiation in a time-dependent manner up to 14 days. VEGF-induced activation of p42 MAPK/ERK also led to the nuclear translocation of MAPK/ERK1/2. Incubation of MAPCs with MAPK/ERK1/2 phosphorylation inhibitor PD98059 blocked the sustained VEGF-induced MAPK/ERK1/2 phosphorylation as well as its nuclear translocation in the differentiating MAPCs. Inhibition of MAPK/ERK1/2 phosphorylation by PD98059 also blocked the expression of EC-specific genes in these cells and their differentiation to ECs. These data suggest that VEGF induces MAPC differentiation into EC via a. MAPK/ERK1/2 signalling pathway-mediated mechanism in vitro.

  • Source
    • "ERK MAP kinase is traditionally thought to lie at the heart of signaling networks that govern proliferation, differentiation , and cell survival (Kolch, 2000). For progenitor cells, similar ERK activation profiles have been described for IL-6 and EPCs (Fan et al, 2008) and for VEGF-induced endothelial differentiation (Xu et al, 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial progenitor cells (EPCs) may provide novel opportunities for therapeutic angiogenesis after ischemic diseases. However, it is unclear how the angiogenic potential of EPCs might be affected by an inflammatory environment. We examine how the potent cytokine interleukin-1β (IL-1β) affects angiovasculogenic responses in EPCs in culture. Mononuclear cells isolated from mouse spleen were plated on fibronectin-coated wells and grown in EGM-2 MV media. Endothelial progenitor cells were phenotyped using multiple markers (UEA-Lectin, ac-LDL, CD133, CD34, vWillebrand Factor, Flk-1) and to identify the IL-1 Receptor-I. We quantified cell and colony counts and performed MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide) and Matrigel assays, in vitro, under control and IL-1β (10 ng/mL) conditions. Endothelial progenitor cells exposed to IL-1β increased in the number of cells and colonies compared with untreated cells, without any effect on cell metabolic integrity. Furthermore, IL-1β treatment augmented EPC angiogenic function, significantly increasing the number of vessel-like structures in the Matrigel assay. An early phosphorylation of ERK1/2 occurred after IL-1β stimulation, and this pathway was inhibited if IL-1 Receptor-I was blocked. Our results suggest that IL-1β is a potent stimulator of in vitro angiogenesis through ERK signaling in mouse EPCs. Further studies are warranted to assess how interactions between proinflammatory environments and EPC responses may be leveraged to enhance therapeutic angiogenesis.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 02/2009; 29(5):933-943. DOI:10.1038/jcbfm.2009.17 · 5.34 Impact Factor
  • Source
    • "ency marker Oct - 4 expression correlated with the endothelial differentiation potential of MAPCs in vitro ( Luttun et al . , 2005 ; Ulloa - Montoya et al . , 2007 ) . In a recently published study , we found that Oct - 4 expression was decreased dramatically at the very early phase when MAPCs were induced to differentiate into endothelial cells ( Xu et al . , 2008 ) . Our finding that NO increases Oct - 4 expressions in bone marrow stem cells suggests that NO may be important to maintaining their plu - ripotency . Recently , Danalache et al . ( 2007 ) showed that NO synthase inhibitor N , G - nitro - L - arginine - methyl - ester decreased the expression of anti - stage specific embryonic antigen"
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was designed to investigate the role of nitric oxide (NO) in bone marrow stem cells and their differentiation into endothelial cells in vitro. Adult mouse bone marrow multipotent progenitor cells (MAPCs) were used as the source of stem cells. Oct-4 expression (both mRNA and protein) was significantly increased by up to 68.0% in MAPCs when incubated with NO donors DETA-NONOate or sodium nitroprusside (SNP) in a concentration-dependant manner (n=3, P<0.05). However, the cell proliferation was dramatically decreased by over 3-folds when treated with DETA-NONOate or SNP for 48 h (n=3, P<0.05). When MAPCs were exposed to DETA-NONOate (100 microM) for the first 48 h during differentiation, the expression (both mRNA and protein) of vWF was significantly increased at day 14 in the differentiating cells. The effects of DETA-NONOate or SNP on cell proliferation, Oct-4 expression and endothelial differentiation of MAPCs were not affected by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or cGMP analog 8-Br-cGMP. These data indicate that NO may regulate both the pluripotency and differentiation of MAPCs via a cGMP-independent mechanism.
    European Journal of Pharmacology 06/2008; 591(1-3):59-65. DOI:10.1016/j.ejphar.2008.06.066 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell therapy is a leading field of research worldwide given its promising potential for recovery or replacement of tissues and organs, especially for the treatment of cardiovascular pathologies. However, despite this enormous experimental effort and the reported positive results in different models, there is no conclusive demonstration of the mechanisms involved in tissue regeneration associated to adult stem cell treatment. This represents one of the major limitations for the clinical translation of stem cell therapy. A real regenerative medicine approach should consider the importance of the extracellular matrix (ECM) and the strong biological signals that it can provide. Connective tissue atmosphere in which cells are embedded exerts a number of actions affecting cells function and supporting their proliferation and differentiation. Polymeric electrospun matrices are among the most promising ECM-mimetic biomaterials, because of their physical structure closely resembling the fibrous proteins in native ECM. Moreover, electrospun materials can be easily functionalized with bioactive molecules providing localized biochemical stimuli to cells seeded therein. The idea of taking advantage of both stem cells plasticity and biomaterials that actively guide and provide the correct sequence of signals to allow ongoing lineage-specific differentiation is an attractive alternative and may represent a promising answer to the treatment limitations of cardiovascular severe diseases.
    01/1970: pages 215-242;
Show more


1 Download