MAPK/ERK signalling mediates VEGF‐induced bone marrow stem cell differentiation into endothelial cell

Journal of Cellular and Molecular Medicine (Impact Factor: 3.7). 02/2008; 12(6a):2395 - 2406. DOI: 10.1111/j.1582-4934.2008.00266.x

ABSTRACT Multi-potent adult progenitor cells (MAPCs) differentiate into endothelial cells (ECs) in the presence of vascular endothelial growth factor (VEGF). The mechanism(s) of VEGF-induced differentiation of MAPCs to ECs are not yet known. We, therefore, examined the role of mitogen-activated protein kinase/extracellular signal-regulated kinase (p42/44-MAPK/ERK1/2) signalling in endothelial differentiation from bone marrow stem cells. We observed that VEGF stimulation of MAPCs for 14 days results in a significant expression of endothelial-specific gene and/or proteins including von Willebrand factor (vWF), vascular endothelial-cadherin (VE-cadherin), VEGF receptor-2 (VEGFR2), and CD31. Up-regulation of EC-specific markers was accompanied by a cobblestone morphology, expression of endothelial nitric oxide synthase (eNOS), and Dil-Ac-LDL uptake, typical for EC morphology and function. VEGF induced a sustained activation of p42 MAPK/ERK, but not that of p44 MAPK/ERK during the course of MAPCs differentiation in a time-dependent manner up to 14 days. VEGF-induced activation of p42 MAPK/ERK also led to the nuclear translocation of MAPK/ERK1/2. Incubation of MAPCs with MAPK/ERK1/2 phosphorylation inhibitor PD98059 blocked the sustained VEGF-induced MAPK/ERK1/2 phosphorylation as well as its nuclear translocation in the differentiating MAPCs. Inhibition of MAPK/ERK1/2 phosphorylation by PD98059 also blocked the expression of EC-specific genes in these cells and their differentiation to ECs. These data suggest that VEGF induces MAPC differentiation into EC via a. MAPK/ERK1/2 signalling pathway-mediated mechanism in vitro.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Melatonin, a major pineal secretory product, exerts a range of physiological and neuroprotective effects. However, the functional significance of melatonin in determining neural identity, and the mechanisms by which this may occur, is unknown. In this study, P19 cells were used as a model system and cell behavior was monitored. Our data show that melatonin plays an important role in determining cell fate during neural commitment and promoting the differentiation of pluripotent P19 cells (Oct4+Sox2+) into neural stem cells (Oct4−Sox2+). This promotion appears to coincide with the activation of the MT1 receptor and phosphorylation of extracellular‐signal‐regulated kinases 1/2 (ERK1/2). Furthermore, our results show that melatonin regulates neural fate specification of P19 cells through two distinct mechanisms: the promotion of nuclear localization of ERK1/2 and upregulation of Sox2 transcription, and suppression of Smad1‐induced expression of mesodermal‐specific genes, such as Bra.
    Journal of Pineal Research 09/2014; 57(2). DOI:10.1111/jpi.12153 · 7.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular regeneration. Growth arrest-specific gene 6 (Gas6) is a novel key regulator of the vascular system, which is linked to a number of cardiovascular diseases. However, the effects of Gas6 on EPCs have not been elucidated to date. The present study was designed to determine the biological function of EPCs treated with Gas6 and to eludicate the underlying mechanisms. EPCs were isolated from umbilical cord blood and treated with various concentrations (25, 50, 100 and 200 ng/ml) of Gas6. The proliferation, migration and angiogenesis of the Gas6-treated EPCs were evaluated by MTT assay, Transwell assay and in vitro tube formation assay, respectively. The phosphorylation status of AKT and ERK was evaluated by western blot analysis. The results demonstrated that treatment with Gas6 enhanced the proliferation and migration of the EPCs in a dose-dependent manner. However, Gas6 did not promote the differentiation of EPCs on Matrigel. Gas6 induced the phosphorylation of AKT, but not that of ERK. The enhanced proliferation and migration induced by Gas6 was markedly suppressed by the inhibitor of PI3K but not by that of ERK. These results suggest that Gas6 activates the AKT signaling pathway, which, in turn, promotes the proliferation and migration of EPCs.
    International Journal of Molecular Medicine 04/2014; 34(1). DOI:10.3892/ijmm.2014.1754 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) have the capacity to restore liver function by differentiating into hepatocyte like cells. However, the underlying mechanisms are not well understood. Here, we have investigated the signals involved in the hepatic differentiation of human umbilical cord-derived mesenchymal stem cells (hUCMSCs). hUCMSCs were treated with mouse fetal liver-conditioned medium (FLCM) to induce hepatic differentiation. Flow cytometry, reverse transcription PCR, real-time PCR, immunocytochemistry, and polymerase chain reaction (PCR) array were used to detect the expression of MSC- and hepotocyte-specific markers in FLCM-treated hUCMSCs. Urea production and cytochrome P450 3A4 (CYP3A4) activity were used as indicators to evaluate liver cell characteristics. Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) was analyzed in hUCMSCs by Western blotting. Following FLCM treatment, expression of MSC-specific markers decreased, while hepatocyte-specific gene expression was increased. Urea production, albumin secretion, glycogen storage, and CYP3A4 activity were significantly enhanced in FLCM-treated cells. In addition, ERK1/2 phosphorylation was increased in a time-dependent manner through Raf/MEK/ERK pathway, and phosphorylation was sustained at a high level during hepatic induction. Inhibition of ERK1/2 activation by U0126 (an ERK1/2 inhibitor) and pFLAG-CMV-ERK1(K71R) (negative mutant of ERK1) reversed the expression of liver-specific genes in hUCMSCs and affected hepatic function significantly. In summary, this work shows that ERK1/2 phosphorylation plays an important role in inducing hepatic differentiation of hUCMSCs in FLCM. © 2015 by the Society for Experimental Biology and Medicine.
    Experimental Biology and Medicine 01/2015; DOI:10.1177/1535370214548996 · 2.23 Impact Factor