MAPK/ERK signalling mediates VEGF‐induced bone marrow stem cell differentiation into endothelial cell

Journal of Cellular and Molecular Medicine (Impact Factor: 4.75). 02/2008; 12(6a):2395 - 2406. DOI: 10.1111/j.1582-4934.2008.00266.x

ABSTRACT Multi-potent adult progenitor cells (MAPCs) differentiate into endothelial cells (ECs) in the presence of vascular endothelial growth factor (VEGF). The mechanism(s) of VEGF-induced differentiation of MAPCs to ECs are not yet known. We, therefore, examined the role of mitogen-activated protein kinase/extracellular signal-regulated kinase (p42/44-MAPK/ERK1/2) signalling in endothelial differentiation from bone marrow stem cells. We observed that VEGF stimulation of MAPCs for 14 days results in a significant expression of endothelial-specific gene and/or proteins including von Willebrand factor (vWF), vascular endothelial-cadherin (VE-cadherin), VEGF receptor-2 (VEGFR2), and CD31. Up-regulation of EC-specific markers was accompanied by a cobblestone morphology, expression of endothelial nitric oxide synthase (eNOS), and Dil-Ac-LDL uptake, typical for EC morphology and function. VEGF induced a sustained activation of p42 MAPK/ERK, but not that of p44 MAPK/ERK during the course of MAPCs differentiation in a time-dependent manner up to 14 days. VEGF-induced activation of p42 MAPK/ERK also led to the nuclear translocation of MAPK/ERK1/2. Incubation of MAPCs with MAPK/ERK1/2 phosphorylation inhibitor PD98059 blocked the sustained VEGF-induced MAPK/ERK1/2 phosphorylation as well as its nuclear translocation in the differentiating MAPCs. Inhibition of MAPK/ERK1/2 phosphorylation by PD98059 also blocked the expression of EC-specific genes in these cells and their differentiation to ECs. These data suggest that VEGF induces MAPC differentiation into EC via a. MAPK/ERK1/2 signalling pathway-mediated mechanism in vitro.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cross-talk between organ-specific extracellular matrix (ECM) and stem cells is often assumed but has not been directly demonstrated. We developed a protocol for the preparation of human cardiac ECM (cECM) and studied whether cECM has effects on pluripotent stem cell differentiation that may be useful for future cardiac regeneration strategies in patients with end-stage heart failure. Of note, 0.3 mm-thick cECM slices were prepared from samples of myocardium from patients with end-stage non-ischaemic dilated cardiomyopathy, using a three-step protocol involving hypotonic lysis buffer, sodium dodecyl sulphate (SDS) and foetal bovine serum (FBS). Murine embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and mesenchymal stromal cells (MSCs) were seeded and grown in standard culture, on cECM or on non-specific ECM preparations (Matrigel® or Geltrex®). Cell attachment, apoptosis induction (Caspase 3/7 activity) and metabolic activity (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium conversion) were followed. Transcriptional activation of genes involved in pluripotency; early and late myocardial development; and endothelial, ectodermal or endodermal commitment were monitored by quantitative real-time polymerase chain reaction (rtPCR). Protein expression of selected markers was confirmed by immunohistology. cECM supported the proliferation of ESCs and iPSCs, and Caspase 3/7 activity was significantly lower compared with standard culture. Cardiac lineage commitment was favoured when ESCs or iPSCs were grown on cECM, as evidenced by the significantly increased mRNA expression of cardiac alpha myosin heavy polypeptide 6 (Myh6), cardiac troponin T2 (Tnnt2) and NK2 homeobox 5 (Nkx2.5) as well as positive immunohistology for cardiac troponin T and heavy-chain cardiac myosin protein. In contrast, Matrigel or Geltrex did not induce cardiac-specific markers. MSCs showed no evidence of cardiomyocyte differentiation. Human cardiac ECM seems to direct differentiation of pluripotent stem cells towards a cardiomyocyte phenotype. This phenomenon supports the use of cardiac ECM preparations for guided stem cell differentiation and myocardial repair, and may ultimately increase the therapeutic efficacy of cell therapy in heart failure patients.
    European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 04/2014; · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) show accelerated regeneration potential when these cells experience hypoxic stress. This "preconditioning" has shown promising results with respect to cardio-protection as it stimulates endogenous mechanisms resulting in multiple cellular responses. The current study was carried out to analyze the effect of hypoxia on the expression of certain growth factors in rat MSCs and cardiomyocytes (CMs). Both cell types were cultured and assessed separately for their responsiveness to hypoxia by an optimized dose of 2,4,-dinitrophenol (DNP). These cells were allowed to propagate under normal condition for either 2 or 24 h and then analyzed for the expression of growth factors by RT-PCR. Variable patterns of expression were observed which indicate that their expression depends on the time of re-oxygenation and extent of hypoxia. To see whether the growth factors released during hypoxia affect the fusion of MSCs with CMs, we performed co-culture studies in normal and conditioned medium. The conditioned medium is defined as the medium in which CMs were grown for re-oxygenation till the specified time period of either 2 or 24 h after hypoxia induction. The results showed that the fusion efficiency of cells was increased when the conditioned medium was used as compared to that in the normal medium. This may be due to the presence of certain growth factors released by the cells under hypoxic condition that promote cell survival and enhance their fusion or regenerating ability. This study would serve as another attempt in designing a therapeutic strategy in which conditioned MSCs can be used for ischemic diseases and provide more specific therapy for cardiac regeneration.
    Molecular Biology Reports 01/2014; · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The capacity for endothelial differentiation has been described in mesenchymal stem cells (MSC) from human bone marrow. To identify genes associated with the endothelial differentiation potential of this cell-type, and search for the optimal regulatory factors, the expression profile of MSC was compared with cDNA from primary human umbilical vein endothelial cells as controls, using cDNA chips with 4096 genes. The data were corroborated by quantitative PCR, Western blotting, and immunocytochemistry. Among the 3948 effective genes, ∼84% (3321) were co-expressed in both cell-types, and 627 were differentially expressed more than twofold in MSC versus EC. MSC highly expressed numerous stem-cell-like genes. Early development genes of endothelial cells, though not up-regulated, had a high expression in MSC, such as EDF1, MDG1, and EDG2. In contrast, mature endothelial growth and signal pathway genes, like VEGF, CXCR4, and CTNNB1, were down-regulated in MSC. In conclusion, human MSC have a distinct molecular basis for endothelial differentiation.
    Cellular Immunology 02/2014; 289(1-2):7-14. · 1.74 Impact Factor