Article

Seladin‐1/DHCR24 protects neuroblastoma cells against Aβ toxicity by increasing membrane cholesterol content

Research Center on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
Journal of Cellular and Molecular Medicine (Impact Factor: 3.7). 01/2008; 12(5b):1990 - 2002. DOI: 10.1111/j.1582-4934.2008.00216.x

ABSTRACT The role of brain cholesterol in Alzheimer's disease (AD) is currently a matter of debate. Experimental evidence suggests that reducing circulating and brain cholesterol protects against AD, however recent data indicate that low membrane cholesterol results in neurode-generation and that the cholesterol synthesis catalyst seladin-1 is down-regulated in AD-affected brain regions. We previously reported a significant correlation between resistance to amyloid toxicity and content of membrane cholesterol in differing cultured cell types. Here we provide evidence that Aβ42 pre-fibrillar aggregates accumulate more slowly and in reduced amount at the plasma membrane of human SH-SY5Y neuroblastoma cells overexpressing seladin-1 or treated with PEG-cholesterol than at the membrane of control cells. The accumulation was significantly increased in cholesterol-depleted cells following treatment with the specific seladin-1 inhibitor 5,22E-cholestadien-3-ol or with methyl-β-cyclodextrin. The resistance to amyloid toxicity and the early cytosolic Ca2+ rise following exposure to Aβ42 aggregates were increased and prevented, respectively, by increasing membrane cholesterol whereas the opposite effects were found in cholesterol-depleted cells. These results suggest that seladin-1-dependent cholesterol synthesis reduces membrane-aggregate interaction and cell damage associated to amyloid-induced imbalance of cytosolic Ca2+. Our findings extend recently reported data indicating that seladin-1 overexpression directly enhances the resistance to Aβ toxicity featuring seladin-1/DHCR 24 as a possible new susceptibility gene for sporadic AD.

Download full-text

Full-text

Available from: Anna Pensalfini, Sep 08, 2014
1 Follower
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A substantial lack of information is recognized on the features underlying the variable susceptibility to amyloid aggregate toxicity of cells with different phenotypes. Recently, we showed that different cell types are variously affected by early aggregates of a prokaryotic hydrogenase domain (HypF-N). In the present study we investigated whether differentiation affects cell susceptibility to amyloid injury using a human neurotypic SH-SY5Y cell differentiation model. We found that retinoic acid-differentiated cells were significantly more resistant against Abeta1-40, Abeta1-42 and HypF-N prefibrillar aggregate toxicity respect to undifferentiated cells treated similarly. Earlier and sharper increases in cytosolic Ca(2+) and ROS with marked lipid peroxidation and mitochondrial dysfunction were also detected in exposed undifferentiated cells resulting in apoptosis activation. The reduced vulnerability of differentiated cells matched a more efficient Ca(2+)-ATPase equipment and a higher total antioxidant capacity. Finally, increasing the content of membrane cholesterol resulted in a remarkable reduction of vulnerability and ability to bind the aggregates in either undifferentiated and differentiated cells.
    Neurochemical Research 03/2008; 33(12):2516-31. DOI:10.1007/s11064-008-9627-7 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen exerts neuroprotective effects and reduces beta-amyloid accumulation in models of Alzheimer's disease (AD). A few years ago, a new neuroprotective gene, i.e. seladin-1 (for selective AD indicator-1), was identified and found to be down-regulated in AD vulnerable brain regions. Seladin-1 inhibits the activation of caspase-3, a key modulator of apoptosis. In addition, it has been demonstrated that the seladin-1 gene encodes 3beta-hydroxysterol Delta24-reductase, which catalyzes the synthesis of cholesterol from desmosterol. We have demonstrated previously that in fetal neuroepithelial cells, 17beta-estradiol (17betaE2), raloxifene, and tamoxifen exert neuroprotective effects and increase the expression of seladin-1. The aim of the present study was to elucidate whether seladin-1 is directly involved in estrogen-mediated neuroprotection. Using the small interfering RNA methodology, significantly reduced levels of seladin-1 mRNA and protein were obtained in fetal neuroepithelial cells. Seladin-1 silencing determined the loss of the protective effect of 17betaE2 against beta-amyloid and oxidative stress toxicity and caspase-3 activation. A computer-assisted analysis revealed the presence of half-palindromic estrogen responsive elements upstream from the coding region of the seladin-1 gene. A 1490-bp region was cloned in a luciferase reporter vector, which was transiently cotransfected with the estrogen receptor alpha in Chinese hamster ovarian cells. The exposure to 17betaE2, raloxifene, tamoxifen, and the soy isoflavones genistein and zearalenone increased luciferase activity, thus suggesting a functional role for the half-estrogen responsive elements of the seladin-1 gene. Our data provide for the first time a direct demonstration that seladin-1 may be considered a fundamental mediator of the neuroprotective effects of estrogen.
    Endocrinology 06/2008; 149(9):4256-66. DOI:10.1210/en.2007-1795 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is characterized by the aggregation and subsequent deposition of misfolded beta-amyloid (Abeta) peptide. Previous studies show that aggregated Abeta is more toxic in oligomeric than in fibrillar form, and that each aggregation form activates specific molecular pathways in the cell. We hypothesize that these differences between oligomers and fibrils are related to their different accessibility to the intracellular space. To this end we used fluorescently labelled Abeta1-42 and demonstrate that Abeta1-42 oligomers readily enter both HeLa and differentiated SKNSH cells whereas fibrillar Abeta1-42 is not internalized. Oligomeric Abeta1-42 is internalized by an endocytic process and is transported to the lysosomes. Inhibition of uptake specifically inhibits oligomer but not fibril toxicity. Our study indicates that selective uptake of oligomers is a determinant of oligomer specific Abeta toxicity.
    Biochimica et Biophysica Acta 07/2008; 1782(9):523-31. DOI:10.1016/j.bbadis.2008.06.003 · 4.66 Impact Factor
Show more