Article

The SUN41 and SUN42 genes are essential for cell separation in Candida albicans

Molecular Microbiology (Impact Factor: 5.03). 11/2007; 66(5):1256 - 1275. DOI: 10.1111/j.1365-2958.2007.06011.x

ABSTRACT Completion of the yeast cell cycle involves extensive remodelling of the cell wall upon separation of mother and daughter cells. We have studied two members of the ascomycete-specific SUN gene family in Candida albicans. Inactivation of SUN41 yields defects in cell separation and hyphal elongation while inactivation of SUN42 results in minor phenotypic alterations. Simultaneous inactivation of SUN41 and SUN42 is synthetically lethal due to lysis of mother cells after septation. Electronic microscopy reveals cell wall defects mainly localized in the region surrounding the septa. This phenotype is osmoremediable and the conditional double mutants show increased sensitivity to cell wall or cell membrane perturbing agents. The essential function shared by Sun41p and Sun42p is conserved among yeasts because UTH1, a Saccharomyces cerevisiae SUN gene, suppresses the lethality of SUN41 and SUN42 conditional mutants. Investigation of functional genomic data obtained in S. cerevisiae reveals links between members of the SUN gene family and the RAM pathway regulating cell wall-degrading enzymes specifically involved during cell separation. Thus, the main function of ascomycetous Sun proteins appears linked to cell wall remodelling, with a probable role in counter-balancing cell wall degradation to avoid cell lysis upon cell separation.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SUN family is comprised of proteins that are conserved among various yeasts and fungi, but that are absent in mammals and plants. Although the function(s) of these proteins are mostly unknown, they have been linked to various, often unrelated cellular processes such as those connected to mitochondrial and cell wall functions. Here we show that three of the four Saccharomyces cerevisiae SUN family proteins, Uth1p, Sim1p and Sun4p, are efficiently secreted out of the cells in different growth phases and their production is affected by the level of oxygen. The Uth1p, Sim1p, Sun4p and Nca3p are mostly synthesized during the growth phase of both yeast liquid cultures and colonies. Culture transition to slow-growing or stationary phases is linked with a decreased cellular concentration of Sim1p and Sun4p and with their efficient release from the cells. In contrast, Uth1p is released mainly from growing cells. The synthesis of Uth1p and Sim1p, but not of Sun4p, is repressed by anoxia. All four proteins confer cell sensitivity to zymolyase. In addition, Uth1p affects cell sensitivity to compounds influencing cell wall composition and integrity (such as Calcofluor white and Congo red) differently when growing on fermentative versus respiratory carbon sources. In contrast, Uth1p is essential for cell resistance to boric acids irrespective of carbon source. In summary, our novel findings support the hypothesis that SUN family proteins are involved in the remodeling of the yeast cell wall during the various phases of yeast culture development and under various environmental conditions. The finding that Uth1p is involved in cell sensitivity to boric acid, i.e. to a compound that is commonly used as an important antifungal in mycoses, opens up new possibilities of investigating the mechanisms of boric acid's action.
    PLoS ONE 09/2013; 8(9):e73882. DOI:10.1371/journal.pone.0073882 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In yeasts, the family of SUN-proteins has been involved in cell wall biogenesis. Here, we report the characterization of SUN-proteins in a filamentous fungus, Aspergillus fumigatus. The function of the two A. fumigatus SUN genes was investigated combining reverse genetics and biochemistry. During conidial swelling and mycelial growth, the expression of AfSUN1 was strongly induced while the expression of AfSUN2 was not detectable. Deletion of AfSUN1 negatively affected hyphal growth and conidiation. A closer examination of the morphological defects revealed swollen hypha, leaky tips, intra-hyphal growth and double cell wall, suggesting that, like in yeast, AfSun1p is associated to cell wall biogenesis. In contrast to AfSUN1, deletion of AfSUN2 either in the parental strain or in the AfSUN1 single mutant strain did not affect colony and hyphal morphology. Biochemical characterization of the recombinant AfSun1p and Candida albicans Sun41p showed that both proteins had an unique hydrolysis pattern: acting on β-(1,3)-oligomers from dimer up to insoluble β-(1,3)-glucan. Refering to the CaZyme database (http://www.cazy.org/), it is clear that fungal SUN-proteins represent a new family of gluco-hydrolases that play an important morphogenetic role in fungal cell wall biogenesis and septation.
    Journal of Biological Chemistry 03/2013; DOI:10.1074/jbc.M112.440172 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sfl1p and Sfl2p are two homologous heat shock factor-type transcriptional regulators that antagonistically control morphogenesis in Candida albicans, while being required for full pathogenesis and virulence. To understand how Sfl1p and Sfl2p exert their function, we combined genome-wide location and expression analyses to reveal their transcriptional targets in vivo together with the associated changes of the C. albicans transcriptome. We show that Sfl1p and Sfl2p bind to the promoter of at least 113 common targets through divergent binding motifs and modulate directly the expression of key transcriptional regulators of C. albicans morphogenesis and/or virulence. Surprisingly, we found that Sfl2p additionally binds to the promoter of 75 specific targets, including a high proportion of hyphal-specific genes (HSGs; HWP1, HYR1, ECE1, others), revealing a direct link between Sfl2p and hyphal development. Data mining pointed to a regulatory network in which Sfl1p and Sfl2p act as both transcriptional activators and repressors. Sfl1p directly represses the expression of positive regulators of hyphal growth (BRG1, UME6, TEC1, SFL2), while upregulating both yeast form-associated genes (RME1, RHD1, YWP1) and repressors of morphogenesis (SSN6, NRG1). On the other hand, Sfl2p directly upregulates HSGs and activators of hyphal growth (UME6, TEC1), while downregulating yeast form-associated genes and repressors of morphogenesis (NRG1, RFG1, SFL1). Using genetic interaction analyses, we provide further evidences that Sfl1p and Sfl2p antagonistically control C. albicans morphogenesis through direct modulation of the expression of important regulators of hyphal growth. Bioinformatic analyses suggest that binding of Sfl1p and Sfl2p to their targets occurs with the co-binding of Efg1p and/or Ndt80p. We show, indeed, that Sfl1p and Sfl2p targets are bound by Efg1p and that both Sfl1p and Sfl2p associate in vivo with Efg1p. Taken together, our data suggest that Sfl1p and Sfl2p act as central "switch on/off" proteins to coordinate the regulation of C. albicans morphogenesis.
    PLoS Pathogens 08/2013; 9(8):e1003519. DOI:10.1371/journal.ppat.1003519 · 8.06 Impact Factor

Full-text (2 Sources)

Download
19 Downloads
Available from
Oct 3, 2014