Article

Denitrification in aqueous FeEDTA solutions

Journal of Chemical Technology & Biotechnology (Impact Factor: 2.5). 06/2004; 79(8):835 - 841. DOI: 10.1002/jctb.1057

ABSTRACT The biological reduction of nitric oxide (NO) in aqueous solutions of FeEDTA is an important key reaction within the BioDeNOx process, a combined physico-chemical and biological technique for the removal of NOx from industrial flue gasses. To explore the reduction of nitrogen oxide analogues, this study investigated the full denitrification pathway in aqueous FeEDTA solutions, ie the reduction of NO3−, NO2−, NO via N2O to N2 in this unusual medium. This was done in batch experiments at 30 °C with 25 mmol dm−3 FeEDTA solutions (pH 7.2 ± 0.2). Also Ca2+ (2 and 10 mmol dm−3) and Mg2+ (2 mmol dm−3) were added in excess to prevent free, uncomplexed EDTA. Nitrate reduction in aqueous solutions of Fe(III)EDTA is accompanied by the biological reduction of Fe(III) to Fe(II), for which ethanol, methanol and also acetate are suitable electron donors. Fe(II)EDTA can serve as electron donor for the biological reduction of nitrate to nitrite, with the concomitant oxidation of Fe(II)EDTA to Fe(III)EDTA. Moreover, Fe(II)EDTA can also serve as electron donor for the chemical reduction of nitrite to NO, with the concomitant formation of the nitrosyl-complex Fe(II)EDTA–NO. The reduction of NO in Fe(II)EDTA was found to be catalysed biologically and occurred about three times faster at 55 °C than NO reduction at 30 °C. This study showed that the nitrogen and iron cycles are strongly coupled and that FeEDTA has an electron-mediating role during the subsequent reduction of nitrate, nitrite, nitric oxide and nitrous oxide to dinitrogen gas. Copyright © 2004 Society of Chemical Industry

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: An integrated process of metal chelate absorption coupled with two stage bio-reduction using immobilized cultures has been proposed to continuously removal of NOx, and the effects of SO2, NO and O2 concentration, gas/liquid flow rate on NOx removal efficiency were investigated. Although nitrogen-containing components, such as Fe(II)EDTA-NO, NO2− and NO3− in the scrubbing solution, inhibited the bio-reduction of Fe(III)EDTA obviously, it was feasible to abate the inhibition effect by using the two stage bio-reduction system, and thus to improve NOx removal efficiency. The removal efficiency decreased slowly with the increase of SO2, O2, NO concentration and gas flow rate, and increased with the increase of liquid flow rate. Continuously operating for 18 days, a high removal efficiency around 95% was reached by using the two-stage bio-reduction system with immobilized microorganisms, while the value decreased to 85% after 5 days of operation by using the suspended microorganisms, at a constant gas flow rate of 60 L/h containing 424–450 mg/m3 NO, 2428–2532 mg/m3 SO2 and 3% O2.
    Process Safety and Environmental Protection 07/2013; 91(4):325-332. · 1.83 Impact Factor
  • Asian Journal of Chemistry 01/2013; 25(14). · 0.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The enzymatic oxidation of Fe(II) by nitrate-reducing bacteria was first suggested about two decades ago. It has since been found that most strains are mixotrophic and need an additional organic co-substrate for complete and prolonged Fe(II) oxidation. Research during the last few years has tried to determine to what extent the observed Fe(II) oxidation is driven enzymatically, or abiotically by nitrite produced during heterotrophic denitrification. A recent study reported that nitrite was not able to oxidize Fe(II)-EDTA abiotically, but the addition of the mixotrophic nitrate-reducing Fe(II)-oxidizer, Acidovorax sp. strain 2AN, led to Fe(II) oxidation (Chakraborty & Picardal, 2013). This, along with other results of that study, was used to argue that Fe(II) oxidation in strain 2AN was enzymatically catalyzed. However, the absence of abiotic Fe(II)-EDTA oxidation by nitrite reported in that study contrasts with previously published data. We have repeated the abiotic and biotic experiments and observed rapid abiotic oxidation of Fe(II)-EDTA by nitrite, resulting in the formation of Fe(III)-EDTA and the green Fe(II)-EDTA-NO complex. Additionally, we found that cultivating the Acidovorax strains BoFeN1 and 2AN with 10 mm nitrate, 5 mm acetate, and approximately 10 mm Fe(II)-EDTA resulted only in incomplete Fe(II)-EDTA oxidation of 47-71%. Cultures of strain BoFeN1 turned green (due to the presence of Fe(II)-EDTA-NO) and the green color persisted over the course of the experiments, whereas strain 2AN was able to further oxidize the Fe(II)-EDTA-NO complex. Our work shows that the two used Acidovorax strains behave very differently in their ability to deal with toxic effects of Fe-EDTA species and the further reduction of the Fe(II)-EDTA-NO nitrosyl complex. Although the enzymatic oxidation of Fe(II) cannot be ruled out, this study underlines the importance of nitrite in nitrate-reducing Fe(II)- and Fe(II)-EDTA-oxidizing cultures and demonstrates that Fe(II)-EDTA cannot be used to demonstrate unequivocally the enzymatic oxidation of Fe(II) by mixotrophic Fe(II)-oxidizers. © 2015 John Wiley & Sons Ltd.
    Geobiology 01/2015; · 3.69 Impact Factor