Polycystic kidney disease and the renal cilium (Review Article)

Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Melbourne Victoria, Australia
Nephrology (Impact Factor: 1.86). 11/2007; 12(6):559 - 564. DOI: 10.1111/j.1440-1797.2007.00869.x

ABSTRACT Polycystic kidney disease (PKD) is a common genetic condition characterized by the formation of fluid-filled cysts in the kidney. Mutations affecting several genes are known to cause PKD and the protein products of most of these genes localize to an organelle called the renal cilium. Renal cilia are non-motile, microtubule-based projections located on the apical surface of the epithelial cells that form the tubules and ducts of the kidney. With the exception of intercalated cells, each epithelial cell bears a single non-motile cilium that projects into the luminal space where it is thought to act as a flow sensor. The detection of fluid flow through the kidney by the renal cilium is hypothesized to regulate a number of pathways responsible for the maintenance of normal epithelial phenotype. Defects of the renal cilium lead to cyst formation, caused primarily by the dedifferentiation and over-proliferation of epithelial cells. Here we discuss the role of renal cilia and the mechanisms by which defects of this organelle are thought to lead to PKD.

Download full-text


Available from: James A Deane, Jun 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary cilia are microscopic sensory antennae that cells in many vertebrate tissues use to gather information about their environment. In the kidney, primary cilia sense urine flow and are essential for the maintenance of epithelial architecture. Defects of this organelle cause the cystic kidney disease characterized by epithelial abnormalities. These findings link primary cilia to the regulation of epithelial differentiation and proliferation, processes that must be precisely controlled during epithelial repair in the kidney. Here, we consider likely roles for primary cilium-based signaling during responses to renal injury and ensuing epithelial repair processes.
    International review of cell and molecular biology 01/2012; 293:169-93. DOI:10.1016/B978-0-12-394304-0.00011-7 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cilia are microtubule-based structures that protrude from the cell surface and function as sensors for mechanical and chemical environmental cues that regulate cellular differentiation or division. In metazoans, ciliary signaling is important during organismal development and in the homeostasis controls of adult tissues, with receptors for the Hedgehog, platelet derived growth factor (PDGF), Wnt, and other signaling cascades arrayed and active along the ciliary membrane. In normal cells, cilia are dynamically regulated during cell cycle progression: present in G0 and G1 cells, and usually in S/G2 cells, but almost invariably resorbed before mitotic entry, to reappear post-cytokinesis. This periodic resorption and reassembly of cilia, specified by the intrinsic cell cycle the intrinsic cell cycle machinery, influences the susceptibility of cells to the influence of extrinsic signals with cilia-associated receptors. Pathogenic conditions of mammals associated with loss of or defects in ciliary integrity include a number of developmental disorders, cystic syndromes in adults, and some cancers. With the continuing expansion of the list of human diseases associated with ciliary abnormalities, the identification of the cellular mechanisms regulating ciliary growth and disassembly has become a topic of intense research interest. Although these mechanisms are far from being understood, a number of recent studies have begun to identify key regulatory factors that may begin to offer insight into disease pathogenesis and treatment. In this chapter we will discuss the current state of knowledge regarding cell cycle control of ciliary dynamics, and provide general methods that can be applied to investigate cell cycle-dependent ciliary growth and disassembly.
    Methods in cell biology 01/2009; 94:137-60. DOI:10.1016/S0091-679X(08)94007-3 · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Planar cell polarity (PCP) describes the coordinated polarization of tissue cells in a direction that is orthogonal to their apical/basal axis. In the last several years, studies in flies and vertebrates have defined evolutionarily conserved pathways that establish and maintain PCP in various cellular contexts. Defective responses to the polarizing signal(s) have deleterious effects on the development and repair of a wide variety of organs/tissues. In this review, we cover the known and hypothesized roles for PCP in the metanephric kidney. We highlight the similarities and differences in PCP establishment in this organ compared with flies, especially the role of Wnt signaling in this process. Finally, we present a model whereby the signal(s) that organizes PCP in the kidney epithelium, at least in part, comes from the adjacent stromal fibroblasts.
    Organogenesis 10/2014; 7(3):180-90. DOI:10.4161/org.7.3.18320 · 2.60 Impact Factor