Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis

The Plant Journal (Impact Factor: 6.58). 04/2011; 66(5):863 - 876. DOI: 10.1111/j.1365-313X.2011.04547.x

ABSTRACT MicroRNAs play a key role in the control of plant development and response to adverse environmental conditions. For example, microRNA395 (miR395), which targets three out of four isoforms of ATP sulfurylase, the first enzyme of sulfate assimilation, as well as a low-affinity sulfate transporter, SULTR2;1, is strongly induced by sulfate deficiency. However, other components of sulfate assimilation are induced by sulfate starvation, so that the role of miR395 is counterintuitive. Here, we describe the regulation of miR395 and its targets by sulfate starvation. We show that miR395 is important for the increased translocation of sulfate to the shoots during sulfate starvation. MiR395 together with the SULFUR LIMITATION 1 transcription factor maintain optimal levels of ATP sulfurylase transcripts to enable increased flux through the sulfate assimilation pathway in sulfate-deficient plants. Reduced expression of ATP sulfurylase (ATPS) alone affects both sulfate translocation and flux, but SULTR2;1 is important for the full rate of sulfate translocation to the shoots. Thus, miR395 is an integral part of the regulatory circuit controlling plant sulfate assimilation with a complex mechanism of action.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arbuscular mycorrhizas (AMs) are one of the most widespread symbioses in the world. They allow plants to receive mineral nutrients from the symbiotic fungus which in turn gets back up to 20% of plant carbon and completes its life cycle. Especially in low-nutrient conditions, AM fungi are capable of significantly improving plant phosphate and nitrogen acquisition, but fewer data are available about sulfur (S) nutrition.We focused on S metabolism in Lotus japonicus upon mycorrhizal colonization under sulfur starvation or repletion. We investigated both tissue sulfate concentrations and S-related gene expression, at cell-type or whole-organ level.Gene expression and sulfate tissue concentration showed that Rhizophagus irregularis colonization can improve plant S nutritional status under S starvation. A group 1 sulfate transporter, LjSultr1;2, induced by both S starvation and mycorrhiza formation, was identified. Its transcript was localized in arbuscule-containing cells, which was confirmed with a promoter-GUS assay, and its function was verified through phenotyping of TILLING mutants in nonmycorrhizal seedlings.LjSultr1;2 thus appears to encode a key protein involved in plant sulfate uptake. In contrast to phosphate transporters, a single gene, LjSultr1;2, seems to mediate both direct and symbiotic pathways of S uptake in L. japonicus.
    New Phytologist 07/2014; · 6.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.
    Molecular Biology Reports 05/2014; · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage and final utilisation of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
    Frontiers in Plant Science 08/2014; · 3.60 Impact Factor


Available from
May 22, 2014