Article

Biocompatibility of Mesoporous Silica Nanoparticles.

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854, United States.
Chemical Research in Toxicology (Impact Factor: 3.67). 07/2012; DOI: 10.1021/tx300166u
Source: PubMed

ABSTRACT In this review, recent reports on the biocompatibility of mesoporous silica nanoparticles (MSNs) are reviewed, with special emphasis being paid to the correlations between MSNs' structural and compositional features and their biological effects on various cells and tissues. First, the different synthetic routes used to produce the most common types of MSNs and the various methods employed to functionalize their surfaces are discussed. This is, however, done only briefly because of the focus of the review being the biocompatibility of the materials. Similarly, the biological applications of MSNs in areas such as drug and gene delivery, biocatalysis, bioimaging, and biosensing are briefly introduced. Many examples have also been mentioned about the biological applications of MSNs while discussing the materials' biocompatibility. The cytotoxicity of different types of MSNs and the effects of their various structural characteristics on their biological activities, which are the focus of this review, are then described in detail. In addition, synthetic strategies developed to reduce or eliminate any possible negative biological effects associated with MSNs or to improve their biocompatibility, as necessary, are illustrated. At the same time, recent reports on the interactions between MSNs and various in vivo or in vitro biological systems, plus our opinions and remarks on what the future may hold for this field, are included.

0 Bookmarks
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesoporous silica nanoparticles (MSN) are functionalized in the walls with an original fluorophore with a high two-photon absorption cross-section. The pores of the MSN filled with anticancer drug are blocked with a pseudo-rotaxane constituted by an azobenzene stalk and a β-cyclodextrin moiety. After incubation of the nanosystem with MCF-7 breast cancer cells, two-photon irradiation at low power is used to image the cells. At high power, cancer cell killing is observed due to the two-photon-triggered opening of the pores through FRET and the release of the anticancer drug from the MSN.
    Small 02/2014; · 7.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesoporous silica nanoparticles (MSNs) have been proposed as drug delivery devices for approximately 15 years. The history of in vitro studies has been promising, demonstrating that MSNs have the capability for stimulus-responsive controlled release, good cellular uptake, cell specific targeting, and the ability to carry a variety of cargoes from hydrophobic drug molecules to imaging agents. However, the translation of the in vitro findings to in vivo conditions has been slow. Herein, we review the current state-of-the-art in the use of MSN for systemic drug delivery in vivo and provide critical insight into the future of MSNs as systemic drug delivery devices and directions that should be undertaken to improve their practicality.
    AAPS PharmSciTech 05/2014; · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the development of a versatile fluorescence resonance energy transfer (FRET)-based real-time monitoring system, consisting of (a) coumarin-labeled-cysteine tethered mesoporous silica nanoparticles (MSNs) as the drug carrier, (b) a fluorescein isothiocyanate-β-cyclodextrin (FITC-β-CD) as redox-responsive molecular valve blocking the pores, and (c) a FRET donor–acceptor pair of coumarin and FITC integrated within the pore-unlocking event, thereby allowing for monitoring the release of drugs from the pores in real-time. Under nonreducing conditions, when the disulfide bond is intact, the close proximity between coumarin and FITC on the surface of MSNs results in FRET from coumarin to FITC. However, in the presence of the redox stimuli like glutathione (GSH), the disulfide bond is cleaved which leads to the removal of molecular valve (FITC-β-CD), thus triggering drug release and eliminating FRET. By engineering such a FRET-active donor–acceptor structure within the redox-responsive molecular valve, we can monitor the release of the drugs entrapped within the pores of the MSN nanocarrier, following the change in the FRET signal. We have demonstrated that, any exogenous or endogenous change in the GSH concentration will result in a change in the extent of drug release as well as a concurrent change in the FRET signal, allowing us to extend the applications of our FRET-based MSNs for monitoring the release of any type of drug molecule in real-time.
    ACS Nano 03/2013; 7(3):2741–2750. · 12.03 Impact Factor