Article

Biocompatibility of Mesoporous Silica Nanoparticles

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , 610 Taylor Road, Piscataway, New Jersey 08854, United States.
Chemical Research in Toxicology (Impact Factor: 4.19). 07/2012; 25(11). DOI: 10.1021/tx300166u
Source: PubMed

ABSTRACT In this review, recent reports on the biocompatibility of mesoporous silica nanoparticles (MSNs) are reviewed, with special emphasis being paid to the correlations between MSNs' structural and compositional features and their biological effects on various cells and tissues. First, the different synthetic routes used to produce the most common types of MSNs and the various methods employed to functionalize their surfaces are discussed. This is, however, done only briefly because of the focus of the review being the biocompatibility of the materials. Similarly, the biological applications of MSNs in areas such as drug and gene delivery, biocatalysis, bioimaging, and biosensing are briefly introduced. Many examples have also been mentioned about the biological applications of MSNs while discussing the materials' biocompatibility. The cytotoxicity of different types of MSNs and the effects of their various structural characteristics on their biological activities, which are the focus of this review, are then described in detail. In addition, synthetic strategies developed to reduce or eliminate any possible negative biological effects associated with MSNs or to improve their biocompatibility, as necessary, are illustrated. At the same time, recent reports on the interactions between MSNs and various in vivo or in vitro biological systems, plus our opinions and remarks on what the future may hold for this field, are included.

1 Follower
 · 
147 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The implementation of cytotoxic chemotherapeutic drugs in the fight against cancer has played an invariably essential role for minimizing the extent of tumour progression and/or metastases in the patient and thus allowing for longer event free survival periods following chemotherapy. However, such therapeutics are nonspecific and bring with them dose-dependent cumulative adverse effects which can severely exacerbate patient suffering. In addition, the emergence of innate and/or acquired chemoresistance to the exposed cytotoxic agents undoubtedly serves to thwart effective clinical efficacy of chemotherapy in the cancer patient. The advent of nanotechnology has led to the development of a myriad of nanoparticle-based strategies with the specific goal to overcome such therapeutic hurdles in multiple cancer conditions. This paper aims to provide a brief overview and recollection of all the latest advances in the last few years concerning the application of nanoparticle technology to enhance the safe and effective delivery of chemotherapeutic agents to the tumour site, together with providing possible solutions to circumvent cancer chemoresistance in the clinical setting.
    11/2012; 2012:265691. DOI:10.1155/2012/265691
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the development of a versatile fluorescence resonance energy transfer (FRET)-based real-time monitoring system, consisting of (a) coumarin-labeled-cysteine tethered mesoporous silica nanoparticles (MSNs) as the drug carrier, (b) a fluorescein isothiocyanate-β-cyclodextrin (FITC-β-CD) as redox-responsive molecular valve blocking the pores, and (c) a FRET donor–acceptor pair of coumarin and FITC integrated within the pore-unlocking event, thereby allowing for monitoring the release of drugs from the pores in real-time. Under nonreducing conditions, when the disulfide bond is intact, the close proximity between coumarin and FITC on the surface of MSNs results in FRET from coumarin to FITC. However, in the presence of the redox stimuli like glutathione (GSH), the disulfide bond is cleaved which leads to the removal of molecular valve (FITC-β-CD), thus triggering drug release and eliminating FRET. By engineering such a FRET-active donor–acceptor structure within the redox-responsive molecular valve, we can monitor the release of the drugs entrapped within the pores of the MSN nanocarrier, following the change in the FRET signal. We have demonstrated that, any exogenous or endogenous change in the GSH concentration will result in a change in the extent of drug release as well as a concurrent change in the FRET signal, allowing us to extend the applications of our FRET-based MSNs for monitoring the release of any type of drug molecule in real-time.
    ACS Nano 03/2013; 7(3):2741–2750. DOI:10.1021/nn400199t
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present here comparative assessments of murine lung toxicity (biocompatibility) after in vitro and in vivo exposures to carbon (C-SiO2-etched), carbon-silica (C-SiO2), carbon-cobalt-silica (C-Co-SiO2), and carbon-cobalt oxide-silica (C-Co3O4-SiO2) nanoparticles. These nanoparticles have potential applications in clinical medicine and bioimaging, and thus their possible adverse events require thorough investigation. The primary aim of this work was to explore whether the nanoparticles are biocompatible with pneumatocyte bioenergetics (cellular respiration and adenosine triphosphate content). Other objectives included assessments of caspase activity, lung structure, and cellular organelles. Pneumatocyte bioenergetics of murine lung remained preserved after treatment with C-SiO2-etched or C-SiO2 nanoparticles. C-SiO2-etched nanoparticles, however, increased caspase activity and altered lung structure more than C-SiO2 did. Consistent with the known mitochondrial toxicity of cobalt, both C-Co-SiO2 and C-Co3O4-SiO2 impaired lung tissue bioenergetics. C-Co-SiO2, however, increased caspase activity and altered lung structure more than C-Co3O4-SiO2. The results indicate that silica shell is essential for biocompatibility. Furthermore, cobalt oxide is the preferred phase over the zerovalent Co(0) phase to impart biocompatibility to cobalt-based nanoparticles.
    International Journal of Nanomedicine 03/2013; 8:1223-44. DOI:10.2147/IJN.S39649
Show more