Inhibition of p38-MAPK alters SRC coactivation and estrogen receptor phosphorylation

Department Medicine
Cancer biology & therapy (Impact Factor: 3.07). 09/2012; 13(11):1026-33. DOI: 10.4161/cbt.20992
Source: PubMed


The p38 mitogen activated protein kinase pathway (MAPK) is known to promote cell survival, endocrine therapy resistance and hormone independent breast cancer cell proliferation. Therefore, we utilized the novel p38 inhibitor RWJ67657 to investigate the relevance of targeting this pathway in the ER (+) breast cancer cell line MCF-7. Our results show that RWJ67657 inhibits both basal and estrogen stimulated phosphorylation of p38α, resulting in decreased activation of the downstream p38α targets hsp27 and MAPAPK. Furthermore, inhibition of p38α by RWJ67657 blocks clonogenic survival of MCF-7 cells with little effect on non-cancerous breast epithelial cells. Even though p38α is known to phosphorylate ERα at residue within ER's hinge region at Thr311, resulting in increased ERα transcriptional activation, our results suggest RWJ67657 inhibits the p38α-induced activation of ER by targeting both the AF-1 and AF-2 activation domains within ERα. We further show that RWJ67657 decreases the transcriptional activity of the ER coactivators SRC-1, SRC-2 and SRC-3. Taken together, our results strongly suggest that in addition to phosphorylating Thr311 within ERα, p38α indirectly activates the ER by phosphorylation and stimulation of the known ERα coactivators, SRC-1, -2 and-3. Overall, our data underscore the therapeutic potential of targeting the p38 MAPK pathway in the treatment of ER (+) breast cancer.

Full-text preview

Available from:
  • Source
    • "Xenograft tumor studies were conducted as previously described (42,51). Immune-compromised female ovariectomized mice (29–32 days old) were obtained from Charles River Laboratories (Wilmington, MA). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acquired chemoresistance and epithelial-to-mesenchymal transition (EMT) are hallmarks of cancer progression and of increasing clinical relevance. We investigated the role of miRNA and p38 mitogen-activated protein kinase (MAPK) signaling in the progression of breast cancer to a drug-resistant and mesenchymal phenotype. We demonstrate that acquired death receptor resistance results in increased hormone-independent tumorigenesis compared to hormone-sensitive parental cells. Utilizing global miRNA gene expression profiling, we identified miRNA alterations associated with the development of death receptor resistance and EMT progression. We further investigated the role of p38 MAPK in this process, showing dose-dependent inactivation of p38 by its inhibitor RWJ67657 and decreased downstream ATF and NF‑κB signaling. Pharmacological inhibition of p38 also decreased chemoresistant cancer tumor growth in xenograft animal models. Interestingly, inhibition of p38 partially reversed the EMT changes found in this cell system, as illustrated by decreased gene expression of the EMT markers Twist, Snail, Slug and ZEB and protein and mRNA levels of Twist, a known EMT promoter, concomitant with decreased N‑cadherin protein. RWJ67657 treatment also altered the expression of several miRNAs known to promote therapeutic resistance, including miR‑200, miR‑303, miR‑302, miR‑199 and miR‑328. Taken together, our results demonstrate the roles of multiple microRNAs and p38 signaling in the progression of cancer and demonstrate the therapeutic potential of targeting the p38 MAPK pathway for reversing EMT in an advanced tumor phenotype.
    International Journal of Oncology 04/2013; 42(4):1139-50. DOI:10.3892/ijo.2013.1814 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells showing low apoptotic effects following oxidative stress-induced DNA damage are mainly affected by growth arrest. Thus, recent studies focus on improving anti-cancer therapies by increasing apoptosis sensitivity. We aimed at identifying a universal molecule as potential target to enhance oxidative stress-based anti-cancer therapy through a switch from cell cycle arrest to apoptosis. A cDNA microarray was performed with hydrogen peroxide-treated oesophageal squamous epithelial cancer cells TE7. This cell line showed checkpoint activation via p21(WAF1) , but low apoptotic response following DNA damage. The potential target molecule was chosen depended on the following demands: it should regulate DNA damage response, cell cycle and apoptosis. As the transcription factor ATF2 is implicated in all these processes, we focused on this protein. We investigated checkpoint activation via ATF2. Indeed, ATF2 knockdown revealed ATF2-triggered p21(WAF1) protein expression, suggesting p21(WAF1) transactivation through ATF2. Using chromatin immunoprecipitation (ChIP), we identified a hitherto unknown ATF2-binding sequence in the p21(WAF1) promoter. p-ATF2 was found to interact with p-c-Jun, creating the AP-1 complex. Moreover, ATF2 knockdown led to c-Jun downregulation. This suggests ATF2-driven induction of c-Jun expression, thereby enhancing ATF2 transcriptional activity via c-Jun-ATF2 heterodimerization. Notably, downregulation of ATF2 caused a switch from cell cycle arrest to reinforced apoptosis, presumably via p21(WAF1) downregulation, confirming the importance of ATF2 in the establishment of cell cycle arrest. 1-Chloro-2,4-dinitrobenzene also led to ATF2-dependent G2/M arrest, suggesting that this is a general feature induced by oxidative stress. As ATF2 knockdown also increased apoptosis, we propose ATF2 as a target for combined oxidative stress-based anti-cancer therapies.
    Journal of Cellular and Molecular Medicine 06/2013; 17(8). DOI:10.1111/jcmm.12071 · 4.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is increasingly clear that inflammation-associated mechanisms can affect breast cancer progression and modulate response to treatment. Estrogen receptor alpha (ERα) is the principal biomarker and therapeutic target for endocrine therapies in breast cancer. Over 70% of patients are ERα positive at diagnosis and are candidates for endocrine therapy. However, ERα positive tumors can become resistant to endocrine therapy. Multiple mechanisms of endocrine resistance have been proposed including ERα suppression. This review discusses the relationship between intratumoral inflammation and endocrine resistance with a particular focus on inflammation-mediated suppression of ERα.
    Endocrine Related Cancer 11/2014; 22(1). DOI:10.1530/ERC-14-0096 · 4.81 Impact Factor