Gene Expression of the Lysophosphatidic Acid Receptor 1 Is a Target of Transforming Growth Factor Beta

Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
Oncogene (Impact Factor: 8.46). 07/2012; 32(26). DOI: 10.1038/onc.2012.325
Source: PubMed


The lysophosphatidic acid (LPA) receptor LPA(1)/Edg2 is the first identified LPA receptor. Although its wide tissue distribution and biological functions have been well studied, little is known about how LPA(1) is transcriptionally regulated. In the current study, we showed that LPA(1) is a physiological target of transforming growth factor beta (TGFβ)-mediated repression. In both normal and neoplastic cells, TGFβ inhibits LPA(1) promoter activity, LPA(1) mRNA expression and LPA(1)-dependent chemotaxis and tumor cell invasion. Knockdown of the TGFβ intracellular effector Smad3 or Smad4 with lentivirally transduced short hairpin RNA relieved these inhibitory effects of TGFβ. Interestingly, the LPA(1) promoter contains two potential TGFβ inhibitory elements (TIEs), each consisting of a Smad-binding site and an adjacent E2F4/5 element, structurally similar to the TIE found on the promoter of the well-defined TGFβ target gene c-myc. Deletion and point mutation analyses indicate that the distal TIE located at 401 bp from the transcription initiation site, is required for TGFβ repression of the LPA(1) promoter. A DNA pull-down assay showed that the -401 TIE was capable of binding Samd3 and E2F4 in TGFβ-treated cells. TGFβ-induced binding of the Smad complex to the native -401 TIE sequence of the LPA(1) gene promoter was further verified by chromatin immunoprecipitation assays. We therefore identified a novel role of TGFβ in the control of LPA(1) expression and LPA(1)-coupled biological functions, adding LPA(1) to the list of TGFβ-repressed target genes.Oncogene advance online publication, 23 July 2012; doi:10.1038/onc.2012.325.

Download full-text


Available from: Abir Mukherjee, Jan 10, 2015
28 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously. Matched plasma, ovary, and oviduct tissue biospecimens derived from healthy, early-stage OVC, and late-stage OVC birds were quantitatively characterized by label-free proteomics. Over 2600 proteins were identified in this study, 348 of which were differentially expressed by more than twofold (p ≤ 0.05) in early- and late-stage ovarian tumor tissue specimens relative to healthy ovarian tissues. Several of the 348 proteins are known to be differentially regulated in human cancers including B2M, CLDN3, EPCAM, PIGR, S100A6, S100A9, S100A11, and TPD52. Of particular interest was ovostatin 2 (OVOS2), a novel 165-kDa protease inhibitor found to be strongly upregulated in chicken ovarian tumors (p = 0.0005) and matched plasma (p = 0.003). Indeed, RT-quantitative PCR and Western blot analysis demonstrated that OVOS2 mRNA and protein were also upregulated in multiple human OVC cell lines compared to normal ovarian epithelia (NOE) cells and immunohistochemical staining confirmed overexpression of OVOS2 in primary human ovarian cancers relative to non-cancerous tissues. Collectively, these data provide the first evidence for involvement of OVOS2 in the pathogenesis of both chicken and human ovarian cancer. Graphical Abstract Translational workflow for the LC-MS/MS identification of novel differentially expressed proteins such as ovostatin 2 (OVOS2) in the chicken followed by targeted analysis in humans.
    Analytical and Bioanalytical Chemistry 07/2015; 407(22). DOI:10.1007/s00216-015-8862-4 · 3.44 Impact Factor