Article

Different missense mutations in histidine‐108 of lysosomal acid lipase cause cholesteryl ester storage disease in unrelated compound heterozygous and hemizygous individuals

Human Mutation (Impact Factor: 5.05). 12/1999; 12(1):44 - 51. DOI: 10.1002/(SICI)1098-1004(1998)12:1<44::AID-HUMU7>3.0.CO;2-O

ABSTRACT Cholesteryl ester storage disease (CESD) and Wolman disease (WD) are both autosomal recessive disorders associated with reduced activity of lysosomal acid lipase (LAL), that leads to the tissue accumulation of cholesteryl esters in endosomes and lysosomes. WD is caused by genetic defects of LAL that leave no residual enzymatic activity, while in CESD patients a residual LAL activity can be identified. We have analyzed the LAL cDNA in three CESD patients from two nonrelated families and identified the mutations responsible for the disease. The associated genetic defects characterized revealed compound heterozygosity for a splice defect leading to skipping of exon 8, due to a G→A transition at position –1 of the exon 8 splice donor site, and a point mutation leading to a His108Pro change (CAT→CCT) in two patients (siblings) with mild CESD phenotype. A further CESD patient was hemizygous for a His108→Arg missense mutation (CAT→CGT) in combination with a partial deletion of the LAL gene and was affected more severely. Expression of the LAL enzymes with the His108→Pro and His108→Arg mutation in insect cells revealed residual enzymatic activities of 4.6% versus 2.7%, respectively, compared with controls. Therefore, His108 seems to play a crucial role in folding or catalytic activity of the lysosomal acid lipase. This is the first description of two different, naturally occurring mutations involving the same amino acid residue in the lysosomal acid lipase in unrelated CESD patients. Moreover, our results demonstrate that the variable manifestation of CESD can be explained by mutation-dependent, variable inactivation of the LAL enzyme. Hum Mutat 12:44–51, 1998. © 1998 Wiley-Liss, Inc.

0 Bookmarks
 · 
48 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE OF REVIEW: Mutations in lysosomal acid lipase A (LIPA) result in two phenotypes depending on the extent of lysosomal acid lipase (LAL) deficiency: the severe, early-onset Wolman disease or the less severe cholesteryl ester storage disease (CESD). In CESD, the severity of the symptoms, hepatomegaly and hypercholesterolaemia, can be highly variable, presenting in childhood or adulthood. Therefore, it is likely that many patients are undiagnosed or misdiagnosed. Nevertheless, LAL deficiency has been recognized for more than 25 years, but adequate therapeutic strategies are limited. RECENT FINDINGS: CESD has an estimated prevalence of one in 90 000 to 170 000 individuals in the general population, confirming the likelihood that this disease is currently underdiagnosed. A number of studies have shown that in LIPA deficient patients the hypercholesterolaemic phenotype can be attenuated using statin therapy, and favourable effects on reduction of lipid accumulation in lysosomes have been reported. Targeting lysosomal exocytosis with LAL replacement therapy was shown to be successful in animal models and recently a phase I/II study demonstrated its safety and its potential metabolic efficacy on transaminase levels. SUMMARY: The hypercholesterolaemic phenotype in CESD can be difficult to distinguish from other known hypercholesterolaemic disorders. In the majority of CESD cases with hypercholesterolaemia favourable responses on statin treatment are observed, but the effect on reduction of lipid accumulation in lysosomes needs to be further evaluated. Combining statins with LAL replacement therapy may provide a promising approach for optimal treatment of LIPA deficiencies in the future.
    Current opinion in lipidology 05/2013; · 5.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The patient, a 69-year-old man, had a chief complaint of hepatomegaly. The liver was palpated four fingerbreadths below the costal margin, and the spleen was three fingerbreadths below the costal margin. There were no other abnormal findings. Laparoscopy showed that the liver resembled an orange-yellow crayon in appearance and was nodular. The pathological findings of the liver biopsy tissue were consistent with liver cirrhosis. Inside the fibrous septum was an apparent aggregation of enlarged macrophages that phagocytosed lipid components, as well as enlarged Kupffer cells that phagocytosed lipid droplets. Electron microscopy showed the lipid droplets to have a moth-eaten appearance. Using monocytes extracted from the peripheral blood, acid lipase activity was measured by fluorescence spectrometry using 4-methylumbelliferone palmitate as a substrate. This patient's human lysosomal acid lipase activity was 0.020 nM/min per 10(6) cells, corresponding to 5.9% of that in healthy subjects (0.332 ± 0.066 nM/min per 10(6) cells). Cholesterol ester storage disease was therefore diagnosed. The acid lipase A base sequence obtained from leukocytes by direct sequencing was compared with a library. This patient had a point mutation of N250H/N250H in exon 7, a novel gene abnormality that has not previously been reported.
    Hepatology Research 05/2013; · 2.22 Impact Factor