Article

Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation.

Department of Clinical Genetics, Division of Human Genetics and Genome Research, National Research Centre, El-Tahrir Street, Dokki, Cairo 12311, Egypt.
Brain (Impact Factor: 10.23). 07/2012; 135(Pt 8):2416-27. DOI: 10.1093/brain/aws162
Source: PubMed

ABSTRACT We describe six cases from three unrelated consanguineous Egyptian families with a novel characteristic brain malformation at the level of the diencephalic-mesencephalic junction. Brain magnetic resonance imaging demonstrated a dysplasia of the diencephalic-mesencephalic junction with a characteristic 'butterfly'-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, post-natal progressive microcephaly, axial hypotonia, spastic quadriparesis and seizures. Autistic features were noted in older cases. Talipes equinovarus, non-obstructive cardiomyopathy and persistent hyperplastic primary vitreous were additional findings in two families. One of the patients required shunting for hydrocephalus; however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term 'diencephalic-mesencephalic junction dysplasia' to characterize this autosomal recessive malformation.

1 Follower
 · 
270 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The frequency and importance of the evaluation of the posterior fossa have increased significantly over the past 20 years owing to advances in neuroimaging. Nowadays, conventional and advanced neuroimaging techniques allow detailed evaluation of the complex anatomic structures within the posterior fossa. A wide spectrum of congenital abnormalities has been demonstrated, including malformations (anomalies due to an alteration of the primary developmental program caused by a genetic defect) and disruptions (anomalies due to the breakdown of a structure that had a normal developmental potential). Familiarity with the spectrum of congenital posterior fossa anomalies and their well-defined diagnostic criteria is crucial for optimal therapy, an accurate prognosis, and correct genetic counseling. The authors discuss the spectrum of posterior fossa malformations and disruptions, with emphasis on neuroimaging findings (including diagnostic criteria), neurologic presentation, systemic involvement, prognosis, and risk of recurrence. (c)RSNA, 2015.
    Radiographics 01/2015; 35(1-1):200-220. DOI:10.1148/rg.351140038 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Historically, the midbrain and hindbrain have been considered of secondary importance to the cerebrum, which has typically been acknowledged as the most important part of the brain. In the past, radiologists and pathologists did not regularly examine these structures-also known as the brainstem and cerebellum-because they are small and difficult to remove without damage. With recent developments in neuroimaging, neuropathology, and neurogenetics, many developmental disorders of the midbrain and hindbrain have emerged as causes of neurodevelopmental dysfunction. These research advances may change the way in which we treat these patients in the future and will enhance the clinical acumen of the practising neurologist and thereby improve the diagnosis and treatment of these patients.
    The Lancet Neurology 04/2013; 12(4):381-93. DOI:10.1016/S1474-4422(13)70024-3 · 21.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuroimaging techniques including structural magnetic resonance imaging (MRI) and functional positron emission tomography (PET) are useful in categorizing various midbrain-hindbrain (MHB) malformations, both in allowing diagnosis and in helping to understand the developmental processes that were disturbed. Brain imaging phenotypes of numerous malformations are characteristic features that help in guiding the genetic testing in case of direct neuroimaging-genotype correlation or, at least, to differentiate among MHB malformations entities. The present review aims to provide the reader with an update of the use of neuroimaging applications in the fine analysis of MHB malformations, using a comprehensive, recently proposed developmental and genetic classification.
    Neuroradiology 10/2014; 57(2). DOI:10.1007/s00234-014-1431-2 · 2.37 Impact Factor