Article

Hemodynamic determinants of aortic dissection propagation by 2D computational modeling: implications for endovascular stent-graftin.

Division of Cardiothoracic Surgery, Department of Surgery, University of California at San Francisco Medical Center and San Francisco VA Medical Center, San Francisco, CA, USA - .
The Journal of cardiovascular surgery (Impact Factor: 1.37). 07/2012; 53(5):631-40.
Source: PubMed

ABSTRACT Aortic dissection is a life-threatening aortic catastrophe where layers of the aortic wall are separated allowing blood flow within the layers. Propagation of aortic dissection is strongly linked to the rate of rise of pressure (dp/dt) experienced by the aortic wall but the hemodynamics is poorly understood. The purpose of this study was to perform computational fluid dynamics (CFD) simulations to determine the relationship between dissection propagation in the distal longitudinal direction (the tearing force) and dp/dt.
Five computational models of aortic dissection in a 2D pipe were constructed. Initiation of dissection and propagation were represented in 4 single entry tear models, 3 of which investigated the role of length of dissection and antegrade propagation, 1 of which investigated retrograde propagation. The 5th model included a distal re-entry tear. Impact of pressure field distribution on tearing force was determined.
Tearing force in the longitudinal direction for dissections with a single entry tear was approximately proportional to dp/dt and L2 where L is the length of dissection. Tearing force was much lower under steady flow than pulsatile flow conditions. Introduction of a second tear distally along the dissection away from the primary entry tear significantly reduced tearing force.
The hemodynamic mechanism for dissection propagation demonstrated in these models support the use of β-blockers in medical management. Endovascular stent-graft treatment of dissection should ideally cover both entry and re-entry tears to reduce risk of retrograde propagation of aortic dissection.

2 Followers
 · 
577 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conservative medical treatment is commonly first recommended for patients with uncomplicated Type-B aortic dissection (AD). However, if dissection-related complications occur, endovascular repair or open surgery is performed. Here we establish computational models of AD based on radiological three-dimensional images of a patient at initial presentation and after 4-years of best medical treatment (BMT). Computational fluid dynamics analyses are performed to quantitatively investigate the hemodynamic features of AD. Entry and re-entries (functioning as entries and outlets) are identified in the initial and follow-up models, and obvious variations of the inter-luminal flow exchange are revealed. Computational studies indicate that the reduction of blood pressure in BMT patients lowers pressure and wall shear stress in the thoracic aorta in general, and flattens the pressure distribution on the outer wall of the dissection, potentially reducing the progressive enlargement of the false lumen. Finally, scenario studies of endovascular aortic repair are conducted. The results indicate that, for patients with multiple tears, stent-grafts occluding all re-entries would be required to effectively reduce inter-luminal blood communication and thus induce thrombosis in the false lumen. This implicates that computational flow analyses may identify entries and relevant re-entries between true and false lumen and potentially assist in stent-graft planning.
    Medical Engineering & Physics 03/2013; 35(9). DOI:10.1016/j.medengphy.2013.02.006 · 1.84 Impact Factor