A promising inert support for laccase production and decolouration of textile wastewater by the white-rot fungus Trametes pubescesns

CEIT, Unit of Environmental Engineering, San Sebastian, Spain.
Journal of hazardous materials (Impact Factor: 4.33). 07/2012; 233-234:158-62. DOI: 10.1016/j.jhazmat.2012.07.003
Source: PubMed

ABSTRACT Cubes of nylon sponge, cubes of polyurethane foam (PUF), cuttings of stainless steel sponges and the commercial carriers Kaldnes™ K1 were tested as inert supports for laccase production by the white-rot fungus Trametes pubescens under semi-solid-state fermentation conditions. The cultures operating with Kaldnes™ K1 led to the highest laccase activity (3667 U/l). In addition this support could be re-utilised, making the whole process more economical. Subsequently, the decolouration of simulated textile wastewater (STW) by T. pubescens grown on the different tested supports under semi-solid-state fermentation conditions was studied. Decolouration percentages around 66-80% were obtained in 96 h. It was found that STW decolouration was due to two mechanisms: laccase action (biodegradation) and adsorption onto fungal mycelium, save for the PUF cultures in which decolouration was mainly due to adsorption onto the support. Further, the decolouration of STW by Kaldnes™ K1 cultures in three successive batches of 96 h each was studied. Decolouration percentages of 51.3, 70.0 and 69.8%, were attained for each batch, respectively.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of our study was to evaluate biotreatability of mature municipal landfill leachate by using white rot fungus and its extracellular enzymes. Leachates were collected in one active and one closed regional municipal landfill. Both chosen landfills were operating for many years and the leachates generated there were polluted by organic and inorganic compounds. The white rot fungus Dichomitus squalens was able to grow in the mature leachate from the closed landfill and as it utilizes present organic matter as a source of carbon, the results were showing 60% of DOC and COD removal and decreased toxicity to the bacterium Aliivibrio fischeri. On the other hand, growth of the fungus was inhibited in the presence of the leachate from the active landfill. However, when the leachate was introduced to a crude enzyme filtrate containing extracellular ligninolytic enzymes, removal levels of COD and DOC reached 61% and 44%, respectively. Furthermore, the treatment led to detoxification of the leachate to the bacterium Aliivibrio fischeri and to reduction of toxicity (42%) to the plant Sinapis alba. Fungal and enzymatic treatment seems to be a promising biological approach for treatment of mature landfill leachates and their application should be further investigated.
    Waste Management 01/2014; 34(4). DOI:10.1016/j.wasman.2013.12.017 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During several forays for ligninolytic fungi in different Spanish native forests, 35 white-rot basidiomycetes growing on dead wood (16 species from 12 genera) and leaf litter (19 species from 10 genera) were selected for their ability to decolorize two recalcitrant aromatic dyes (Reactive Blue 38 and Reactive Black 5) added to malt extract agar medium. In this study, two dye decolorization patterns were observed and correlated with two ecophysiological groups (wood and humus white-rot basidiomycetes) and three taxonomical groups (orders Polyporales, Hymenochaetales and Agaricales). Depending on the above groups, different decolorization zones were observed on the dye-containing plates, being restricted to the colony area or extending to the surrounding medium, which suggested two different decay strategies. These two strategies were related to the ability to secrete peroxidases and laccases inside (white-rot wood Polyporales, Hymenochaetales and Agaricales) and outside (white-rot humus Agaricales) of the fungal colony, as revealed by enzymatic tests performed directly on the agar plates. Similar oxidoreductases production patterns were observed when fungi were grown in the absence of dyes, although the set of enzyme released was different. All these results suggest that the decolorization patterns observed could be related with the existence of two decay strategies developed by white-rot basidiomycetes adapted to wood and leaf litter decay in the field.
    Fungal Genetics and Biology 04/2014; 72. DOI:10.1016/j.fgb.2014.03.007 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The decolouration of the metal-complex dyes Bemaplex Navy M-T (150 mg/L) and Bezaktiv Blue BA (150 mg/L) in nine successive batches by immobilised cultures of the white-rot fungus Trametes pubescens was studied. Two different types of immobilisation supports were used: the commercial carriers Kaldnes™ K1 (synthetic supports) and sunflower-seed shells (SS) (natural supports). Bemaplex showed more resistance to degradation by T. pubescens cultures than Bezaktiv, especially in the K1 cultures. Thus, SS cultures led to decolouration percentages higher than 59% for Bemaplex in all the batches save for the last two and higher than 50% for Bezaktiv in all the batches except for the 2nd and 9th ones. K1 cultures showed decolouration percentages for Bemaplex higher than 42% in batches 1, 3, 4, 5 and 7 and for Bezaktiv higher than 70% in all the batches save for the last one. Dye decolouration was mainly due to enzyme action (biodegradation).
    10/2014; 4. DOI:10.1016/j.btre.2014.10.006


Available from
May 30, 2014