Article

Structures of Lysenin Reveal a Shared Evolutionary Origin for Pore-Forming Proteins And Its Mode of Sphingomyelin Recognition

Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
Structure (Impact Factor: 6.79). 07/2012; 20(9):1498-507. DOI: 10.1016/j.str.2012.06.011
Source: PubMed

ABSTRACT Pore-forming proteins insert from solution into membranes to create lesions, undergoing a structural rearrangement often accompanied by oligomerization. Lysenin, a pore-forming toxin from the earthworm Eisenia fetida, specifically interacts with sphingomyelin (SM) and may confer innate immunity against parasites by attacking their membranes to form pores. SM has important roles in cell membranes and lysenin is a popular SM-labeling reagent. The structure of lysenin suggests common ancestry with other pore-forming proteins from a diverse set of eukaryotes and prokaryotes. The complex with SM shows the mode of its recognition by a protein in which both the phosphocholine headgroup and one acyl tail are specifically bound. Lipid interaction studies and assays using viable target cells confirm the functional reliance of lysenin on this form of SM recognition.

0 Followers
 · 
132 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Equinatoxin II (EqtII) is a soluble, 20 kDa pore-forming protein toxin isolated from the sea anemone Actinia equina. Although pore formation has long been known to occur in distinct stages, including monomeric attachment to phospholipid membranes followed by detachment of the N-terminal helical domain and oligomerization into the final pore assembly, atomistic-level detail of the protein-lipid interactions underlying these events remains elusive. Using high-resolution solution state NMR of uniformly-(15)N-labeled EqtII at the critical micelle concentration of dodecylphosphocholine, we have mapped the lipid-binding site through chemical shift perturbations. Subsequent docking of an EqtII monomer onto a dodecylphosphocholine micelle, followed by 400 ns of all-atom molecular dynamics simulation, saw several high-occupancy lipid-binding pockets stabilized by cation-π, hydrogen bonding, and hydrophobic interactions; and stabilization of the loop housing the conserved arginine-glycine-aspartate motif. Additional simulation of EqtII with an N-acetyl sphingomyelin micelle, for which high-resolution NMR data cannot be obtained due to aggregate formation, revealed that sphingomyelin specificity might occur via hydrogen bonding to the 3-OH and 2-NH groups unique to the ceramide backbone by side chains of D109 and Y113; and main chains of P81 and W112. Furthermore, a binding pocket formed by K30, K77, and P81, proximate to the hinge region of the N-terminal helix, was identified and may be implicated in triggering pore formation. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
    Biophysical Journal 04/2015; 108(8):1987-96. DOI:10.1016/j.bpj.2015.03.024 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sphingomyelin (SM) is a major sphingolipid in mammalian cells and is reported to form specific lipid domains together with cholesterol. However, methods to examine the membrane distribution of SM are limited. We demonstrated in model membranes that fluorescent protein conjugates of 2 specific SM-binding toxins, lysenin (Lys) and equinatoxin II (EqtII), recognize different membrane distributions of SM; Lys exclusively binds clustered SM, whereas EqtII preferentially binds dispersed SM. Freeze-fracture immunoelectron microscopy showed that clustered but not dispersed SM formed lipid domains on the cell surface. Glycolipids and the membrane concentration of SM affect the SM distribution pattern on the plasma membrane. Using derivatives of Lys and EqtII as SM distribution-sensitive probes, we revealed the exclusive accumulation of SM clusters in the midbody at the time of cytokinesis. Interestingly, apical membranes of differentiated epithelial cells exhibited dispersed SM distribution, whereas SM was clustered in basolateral membranes. Clustered but not dispersed SM was absent from the cell surface of acid sphingomyelinase-deficient Niemann-Pick type A cells. These data suggest that both the SM content and membrane distribution are crucial for pathophysiological events bringing therapeutic perspective in the role of SM membrane distribution.-Makino, A., Abe, M., Murate, M., Inaba, T., Yilmaz, N., Hullin-Matsuda, F., Kishimoto, T., Schieber, N. L., Taguchi, T., Arai, H., Anderluh, G., Parton, R. G., Kobayashi, T. Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis.
    The FASEB Journal 11/2014; 29(2). DOI:10.1096/fj.13-247585 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.
    Toxins 12/2014; 6(12):3488-3551. DOI:10.3390/toxins6123488 · 2.48 Impact Factor