Complement Inhibitors from Scabies Mites Promote Streptococcal Growth – A Novel Mechanism in Infected Epidermis?

George Washington University, United States of America
PLoS Neglected Tropical Diseases (Impact Factor: 4.49). 07/2012; 6(7):e1563. DOI: 10.1371/journal.pntd.0001563
Source: PubMed

ABSTRACT Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections.
GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 µg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2-15 fold.
We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Scabies is a ubiquitous and contagious skin disease caused by the parasitic mite Sarcoptes scabiei. Epidemiological studies have identified scabies as a causative agent for secondary skin infections caused by Staphylococcus aureus and Streptococcus pyogenes. This is an important notion, as such bacterial infections can lead to serious downstream life-threatening complications. Since the complement system is the first line of host defense that confronts invading pathogens, both the mite and bacteria produce a large array of molecules that inhibit the complement cascades. It is hypothesized that scabies mite complement inhibitors may play an important role in providing a favorable micro-environment for the establishment of secondary bacterial infections. This review aims to bring together the current literature on complement inhibition by scabies mites and bacteria associated with scabies and to discuss the proposed molecular link between scabies and bacterial co-infections. This article is protected by copyright. All rights reserved.
    Parasite Immunology 07/2014; 36(11). DOI:10.1111/pim.12133 · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such,these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission.
    PLoS Neglected Tropical Diseases 01/2015; 9(1). DOI:10.1371/journal.pntd.0003448 · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are an estimated 0.5 - 1 million mite species on earth. Among the many mites that are known to affect humans and animals, only a subset are parasitic but these can cause significant disease. We aim here to provide an overview of the most recent work in this field in order to identify common biological features of these parasites and to inform common strategies for future research. There is a critical need for diagnostic tools to allow for better surveillance and for drugs tailored specifically to the respective parasites. Multi-'omics' approaches represent a logical and timely strategy to identify the appropriate mite molecules. Recent advances in sequencing technology enable us to generate de novo genome sequence data, even from limited DNA resources. Consequently, the field of mite genomics has recently emerged and will now rapidly expand, which is a particular advantage for parasitic mites that cannot be cultured in vitro. Investigations of the microbiota associated with mites will elucidate the link between parasites and pathogens, and define the role of the mite in transmission and pathogenesis. The databases generated will provide the crucial knowledge essential to design novel diagnostic tools, control measures, prophylaxes, drugs and immunotherapies against the mites and associated secondary infections.
    International Journal for Parasitology 09/2014; 44(12). DOI:10.1016/j.ijpara.2014.08.003 · 3.40 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014