Isoflurane binds and stabilizes a closed conformation of the leukocyte function-associated antigen-1

*Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Boston, Massachusetts, USA
The FASEB Journal (Impact Factor: 5.04). 07/2012; 26(11). DOI: 10.1096/fj.12-212746
Source: PubMed


We previously demonstrated that isoflurane targets lymphocyte function-associated antigen-1 (LFA-1), a critical adhesion molecule for leukocyte arrest. However, it remains to be determined how isoflurane interacts with the full ectodomain LFA-1 and modulates its conformation and function. Isoflurane binding sites on the full ectodomain LFA-1 were probed by photolabeling using photoactivatable isoflurane (azi-isoflurane). The adducted residues were determined by liquid chromatography/mass spectrometry analysis. Separately, docking simulations were performed to predict binding sites. Point mutations were introduced around isoflurane binding sites. The significance of isoflurane's effect was assessed in both intracellular adhesion molecule-1 (ICAM-1) binding assays and epitope mapping of activation-sensitive antibodies using flow cytometry. Two isoflurane binding sites were identified using photolabeling and were further validated by the docking simulation: one at the hydrophobic pocket in the ICAM-1 binding domain (the αI domain); the other at the βI domain. Mutagenesis of the α'1 helix showed that isoflurane binding sites at the βI domain were significantly important in modulating LFA-1 function and conformation. Epitope mapping using activation-sensitive antibodies suggested that isoflurane stabilized LFA-1 in the closed conformation. This study suggested that isoflurane binds to both the αI and βI domains allosteric to the ICAM-1 binding site, and that isoflurane binding stabilizes LFA-1 in the closed conformation.-Yuki, K., Bu, W., Xi, J., Sen, M., Shimaoka, M., Eckenhof, R.G. Isoflurane binds and stabilizes a closed conformation of the leukocyte function-associated antigen-1.

10 Reads
  • Source
    • "Because there are many proteins with hydrophobic cavities that can accommodate 1-AMA (∼500 Å3)[28], this was predicted. Our previous work showed that isoflurane bound LFA-1 at the “lovastatin site” [12], [20], so we hypothesized that isoflurane and 1-AMA would compete at this site, with the S-enantiomer being more potent than R-isoflurane. Because 1-AMA displacement requires a small amount of reagents and the available amount of isoflurane enantiomers is limited, we opted to use this method in a cell-free system. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Isoflurane in clinical use is a racemate of S- and R-isoflurane. Previous studies have demonstrated that the effects of S-isoflurane on relevant anesthetic targets might be modestly stronger (less than 2-fold) than R-isoflurane. The X-ray crystallographic structure of the immunological target, leukocyte function-associated antigen-1 (LFA-1) with racemic isoflurane suggested that only S-isoflurane bound specifically to this protein. If so, the use of specific isoflurane enantiomers may have advantage in the surgical settings where a wide range of inflammatory responses is expected to occur. Here, we have further tested the hypothesis that isoflurane enantioselectivity is apparent in solution binding and functional studies. First, binding of isoflurane enantiomers to LFA-1 was studied using 1-aminoanthracene (1-AMA) displacement assays. The binding site of each enantiomer on LFA-1 was studied using the docking program GLIDE. Functional studies employed the flow-cytometry based ICAM binding assay. Both enantiomers decreased 1-AMA fluorescence signal (at 520 nm), indicating that both competed with 1-AMA and bound to the αL I domain. The docking simulation demonstrated that both enantiomers bound to the LFA-1 "lovastatin site." ICAM binding assays showed that S-isoflurane inhibited more potently than R-isoflurane, consistent with the result of 1-AMA competition assay. In contrast with the x-ray crystallography, both enantiomers bound to and inhibited LFA-1. S-isoflurane showed slight preference over R-isoflurane.
    PLoS ONE 05/2014; 9(5):e96649. DOI:10.1371/journal.pone.0096649 · 3.23 Impact Factor
  • Source
    • "The study by Horn et al. demonstrated that sevoflurane, even at subanesthetic concentrations, significantly abolished the activation of αIIbβ3 in whole blood [27]. Inspired by Horn et al, and building on our previous studies on the effects of volatile anesthetics to leukocyte integrins [28],[29],[30],[31], here we tested the hypothesis that isoflurane and sevoflurane, not propofol directly interacted with platelet integrin αIIbβ3and interfered with its activation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In clinical reports, the usage of isoflurane and sevoflurane was associated with more surgical field bleeding in endoscopic sinus surgeries as compared to propofol. The activation of platelet receptor αIIbβ3 is a crucial event for platelet aggregation and clot stability. Here we studied the effect of isoflurane, sevoflurane, and propofol on the activation of αIIbβ3. The effect of anesthetics on the activation of αIIbβ3 was probed using the activation sensitive antibody PAC-1 in both cell-based (platelets and αIIbβ3 transfectants) and cell-free assays. The binding sites of isoflurane on αIIbβ3 were explored using photoactivatable isoflurane (azi-isoflurane). The functional implication of revealed isoflurane binding sites were studied using alanine-scanning mutagenesis. Isoflurane and sevoflurane diminished the binding of PAC-1 to wild-type αIIbβ3 transfectants, but not to the high-affinity mutant, β3-N305T. Both anesthetics also impaired PAC-1 binding in a cell-free assay. In contrast, propofol did not affect the activation of αIIbβ3. Residues adducted by azi-isoflurane were near the calcium binding site (an important regulatory site termed SyMBS) just outside of the ligand binding site. The mutagenesis experiments demonstrated that these adducted residues were important in regulating integrin activation. Isoflurane and sevoflurane, but not propofol, impaired the activation of αIIbβ3. Azi-isoflurane binds to the regulatory site of integrin αIIbβ3, thereby suggesting that isoflurane blocks ligand binding of αIIbβ3 in not a competitive, but an allosteric manner.
    PLoS ONE 04/2013; 8(4):e60415. DOI:10.1371/journal.pone.0060415 · 3.23 Impact Factor
  • Source
    • "We found that isoflurane anaesthesia alone resulted in a profound reduction in circulating lymphocytes within hours. Some effects of isoflurane on leukocyte activation have been reported earlier (Yuki et al., 2012; Carbo et al., 2013), and a decrease in Th1/Th2 ratio in the blood has been observed in patients undergoing craniotomy in response to isoflurane (Inada et al., 2004). However, the present study demonstrates a rapid and sustained reduction in circulating T cell numbers induced by isoflurane anaesthesia, which could have important implications clinically and also in models of experimental stroke. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute brain injury results in peripheral inflammatory changes, although the impact of these processes on neuronal death and neuroinflammation is currently unclear. To facilitate the translation of experimental studies to clinical benefit, it is vital to characterize the mechanisms by which acute brain injury induces peripheral inflammatory changes, and how these are affected by surgical manipulation in experimental models. Here we show that in mice, even mild surgical manipulation of extracranial tissues induced marked granulocyte mobilization (300%) and systemic induction of cytokines. However, intracranial changes induced by craniotomy, or subsequent induction of focal cerebral ischemia were required to induce egress of CXCR2-positive granulocytes from the bone marrow. CXCR2 blockade resulted in reduced mobilization of granulocytes from the bone marrow, caused an unexpected increase in circulating granulocytes, but failed to affect brain injury induced by cerebral ischemia. We also demonstrate that isoflurane anaesthesia interferes with circulating leukocyte responses, which could contribute to the reported vascular and neuroprotective effects of isoflurane. In addition, no immunosuppression develops in the bone marrow after experimental stroke. Thus, experimental models of cerebral ischemia are compromised by surgery and anaesthesia in proportion to the severity of surgical intervention and overall tissue injury. Understanding the inherent confounding effects of surgical manipulation and development of new models of cerebral ischemia with minimal surgical intervention could facilitate better understanding of interactions between inflammation and brain injury.
    Frontiers in Neuroscience 01/2013; 7(8):271. DOI:10.3389/fnins.2013.00271 · 3.66 Impact Factor
Show more

Similar Publications