Chemical macrocyclization of peptides fused to antibody fc fragments.

Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland.
Bioconjugate Chemistry (Impact Factor: 4.82). 07/2012; 23(9):1856-63. DOI: 10.1021/bc300184m
Source: PubMed

ABSTRACT To extend the plasma half-life of a bicyclic peptide antagonist, we chose to link it to the Fc fragment of the long-lived serum protein IgG1. Instead of chemically conjugating the entire bicyclic peptide, we recombinantly expressed its peptide moiety as a fusion protein to an Fc fragment and subsequently cyclized the peptide by chemically reacting its three cysteine residues with tris-(bromomethyl)benzene. This reaction was efficient and selective, yielding completely modified peptide fusion protein and no side products. After optimization of the linker and the Fc fragment format, the bicyclic peptide was fully functional as an inhibitor (K(i) = 76 nM) and showed an extended terminal half-life of 1.5 days in mice. The unexpectedly clean reaction makes chemical macrocyclization of peptide-Fc fusion proteins an attractive synthetic approach. Its good compatibility with the Fc fragment may lend the bromomethylbenzene-based chemistry also for the generation of antibody-drug conjugates.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many naturally occurring cyclic peptides or derivatives thereof are used as therapeutics such as the human hormones vasopressin and oxytocin or the antibiotics vancomycin and daptomycin. The success of cyclic peptide therapeutics is based on their ability to bind with high affinity, their good target selectivity and their low toxicity. As nature provides cyclic peptides to only a small number of disease targets, strategies have been developed to generate cyclic peptide ligands with tailored specificity de novo. Our laboratory is specialized on the directed evolution of bicyclic peptide ligands by phage display. In this article, we review our recent work to in vitro evolve bicyclic peptide antagonists, the binding and pharmacokinetic properties of bicyclic peptides, as well as efforts to generate bicyclic peptides for therapeutic application.
    CHIMIA International Journal for Chemistry 12/2013; 67(12):910-5. · 1.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient gene expression (TGE) from mammalian cells is an increasingly important tool for the rapid production of recombinant proteins for research applications in biochemistry, structural biology, and biomedicine. Here we review methods for the transfection of human embryo kidney (HEK-293) and Chinese hamster ovary (CHO) cells in suspension culture using the cationic polymer polyethylenimine (PEI) for gene delivery.
    Protein Expression and Purification 09/2013; · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Improving the binding affinity and/or stability of peptide ligands often requires testing of large numbers of variants to identify beneficial mutations. Herein we propose a type of mutation that promises a high success rate. In a bicyclic peptide inhibitor of the cancer-related protease urokinase-type plasminogen activator (uPA), we observed a glycine residue that has a positive ϕ dihedral angle when bound to the target. We hypothesized that replacing it with a D-amino acid, which favors positive ϕ angles, could enhance the binding affinity and/or proteolytic resistance. Mutation of this specific glycine to D-serine in the bicyclic peptide indeed improved inhibitory activity (1.75-fold) and stability (fourfold). X-ray-structure analysis of the inhibitors in complex with uPA showed that the peptide backbone conformation was conserved. Analysis of known cyclic peptide ligands showed that glycine is one of the most frequent amino acids, and that glycines with positive ϕ angles are found in many protein-bound peptides. These results suggest that the glycine-to-D-amino acid mutagenesis strategy could be broadly applied.
    ChemBioChem 07/2013; · 3.06 Impact Factor