Article

Chemical Macrocyclization of Peptides Fused to Antibody Fc Fragments

Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland.
Bioconjugate Chemistry (Impact Factor: 4.82). 07/2012; 23(9):1856-63. DOI: 10.1021/bc300184m
Source: PubMed

ABSTRACT To extend the plasma half-life of a bicyclic peptide antagonist, we chose to link it to the Fc fragment of the long-lived serum protein IgG1. Instead of chemically conjugating the entire bicyclic peptide, we recombinantly expressed its peptide moiety as a fusion protein to an Fc fragment and subsequently cyclized the peptide by chemically reacting its three cysteine residues with tris-(bromomethyl)benzene. This reaction was efficient and selective, yielding completely modified peptide fusion protein and no side products. After optimization of the linker and the Fc fragment format, the bicyclic peptide was fully functional as an inhibitor (K(i) = 76 nM) and showed an extended terminal half-life of 1.5 days in mice. The unexpectedly clean reaction makes chemical macrocyclization of peptide-Fc fusion proteins an attractive synthetic approach. Its good compatibility with the Fc fragment may lend the bromomethylbenzene-based chemistry also for the generation of antibody-drug conjugates.

0 Followers
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many naturally occurring cyclic peptides or derivatives thereof are used as therapeutics such as the human hormones vasopressin and oxytocin or the antibiotics vancomycin and daptomycin. The success of cyclic peptide therapeutics is based on their ability to bind with high affinity, their good target selectivity and their low toxicity. As nature provides cyclic peptides to only a small number of disease targets, strategies have been developed to generate cyclic peptide ligands with tailored specificity de novo. Our laboratory is specialized on the directed evolution of bicyclic peptide ligands by phage display. In this article, we review our recent work to in vitro evolve bicyclic peptide antagonists, the binding and pharmacokinetic properties of bicyclic peptides, as well as efforts to generate bicyclic peptides for therapeutic application.
    CHIMIA International Journal for Chemistry 12/2013; 67(12):910-5. DOI:10.2533/chimia.2013.910 · 1.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The generation of drug conjugates for safe and effective tumor targeting requires binding proteins tolerant to functionalization by rational engineering. Here, we show that Designed Ankyrin Repeat Proteins (DARPins), a novel class of binding proteins not derived from antibodies, can be used as building blocks for facile orthogonal assembly of bioconjugates for tumor targeting with tailored properties. DARPin Ec1, which targets the Epithelial Cell Adhesion Molecule (EpCAM), was genetically modified with a C-terminal cysteine for conjugation of the small molecule cytotoxin monomethylauristatin F (MMAF). In addition, it was N-terminally functionalized by metabolic introduction of the non-natural amino acid azidohomoalanine to enable linkage of site-specifically dibenzocyclooctyne-modified mouse serum albumin (MSA) for half-life extension using Cu(I)-free click chemistry. The conjugate MSA-Ec1-MMAF was assembled to obtain high yields of a pure and stable drug conjugate as confirmed by various analytical methods and in functional assays. The orthogonality of the assembly lead to a defined reaction product and preserved the functional properties of all modules, including EpCAM-specific binding and internalization, FcRn binding mediated by MSA and cytotoxic potency. Linkage of MMAF to the DARPin increased receptor-specific uptake of the drug while decreasing non-specific uptake, and further coupling of the conjugate to MSA enhanced this effect. In mice, albumin conjugation increased the serum half-life from 11 min to 17.4 h, resulting in a more than 22-fold increase in the area-under-the-curve (AUC). Our data demonstrate the promise of the DARPin format for facile modular assembly of drug conjugates with improved pharmacokinetic performance for tumor targeting.
    Bioconjugate Chemistry 10/2013; DOI:10.1021/bc4004102 · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein-based pharmaceuticals typically display high selectivity and low toxicity, but are also characterized by low oral availability, mainly because of enzymatic degradation in the gastrointestinal tract and poor permeability across the intestinal wall. One way to increase the proteolytic stability of peptides and proteins is by intramolecular crosslinking, such as the introduction of disulfide bridges. However, disulfide bridges are at risk of thiol-disulfide exchange or reduction during production, purification, and/or therapeutic use, whereas thioether bridges are expected to be stable under the same conditions. In this study, thioether crosslinking was investigated for a 46 aa albumin-binding domain (ABD) derived from streptococcal protein G. ABD binds with high affinity to human serum albumin (HSA) and has been proposed as a fusion partner to increase the in vivo half-lives of therapeutic proteins. In the study, five ABD variants with single or double intramolecular thioether bridges were designed and synthesized. The binding affinity, secondary structure, and thermal stability of each protein was investigated by SPR-based biosensor analysis and CD spectroscopy. The proteolytic stability in the presence of the major intestinal proteases pepsin (found in the stomach) and trypsin in combination with chymotrypsin (found in pancreatin secreted to the duodenum by the pancreas) was also investigated. The most promising crosslinked variant, ABD_CL1, showed high thermal stability, retained high affinity in binding to HSA, and showed dramatically increased stability in the presence of pepsin and trypsin/chymotrypsin, compared to the ABD reference protein. This suggests that the intramolecular thioether crosslinking strategy can be used to increase the stability towards gastrointestinal enzymes.
    ChemBioChem 09/2014; 15(14). DOI:10.1002/cbic.201400002 · 3.06 Impact Factor