Article

Protective response to subunit vaccination against intranasal Burkholderia mallei and B. pseudomallei challenge

Procedia in Vaccinology 01/2010; 2(1):73-77. DOI: 10.1016/j.provac.2010.03.013

ABSTRACT Burkholderia mallei and B. pseudomallei are Gram-negative pathogenic bacteria, responsible for the diseases glanders and melioidosis, respectively. Furthermore, there is currently no vaccine available against these Burkholderia species. In this study, we aimed to identify protective proteins against these pathogens. Immunization with recombinant B. mallei Hcp1 (type VI secreted/structural protein), BimA (autotransporter protein), BopA (type III secreted protein), and B. pseudomallei LolC (ABC transporter protein) generated significant protection against lethal inhaled B. mallei ATCC23344 and B. pseudomallei 1026b challenge. Immunization with BopA elicited the greatest protective activity, resulting in 100% and 60% survival against B. mallei and B. pseudomallei challenge, respectively. Moreover, sera from recovered mice demonstrated reactivity with the recombinant proteins. Dendritic cells stimulated with each of the different recombinant proteins showed distinct cytokine patterns. In addition, T cells from immunized mice produced IFN-γ following in vitro re-stimulation. These results indicated therefore that it was possible to elicit cross-protective immunity against both B. mallei and B. pseudomallei by vaccinating animals with one or more novel recombinant proteins identified in B. mallei.

0 Bookmarks
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia are highly evolved Gram-negative bacteria that primarily infect solipeds but are transmitted to humans by ingestion and cutaneous or aerosol exposures. Heightened concern over human infections of Burkholderia mallei and the very closely related species B. pseudomallei is due to the pathogens' proven effectiveness as bioweapons, and to the increased potential for natural opportunistic infections in the growing diabetic and immuno-compromised populations. These Burkholderia species are nearly impervious to antibiotic treatments and no vaccine exists. In this study, the genome of the highly virulent B. mallei ATCC23344 strain was examined by expression library immunization for gene-encoded protective antigens. This protocol for genomic-scale functional screening was customized to accommodate the unusually large complexity of Burkholderia, and yielded 12 new putative vaccine candidates. Five of the candidates were individually tested as protein immunogens and three were found to confer significant partial protection against a lethal pulmonary infection in a murine model of disease. Determinations of peripheral blood cytokine and chemokine profiles following individual protein immunizations show that interleukin-2 (IL-2) and IL-4 are elicited by the three confirmed candidates, but unexpectedly interferon-γ and tumor necrosis factor-α are not. We suggest that these pathogen components, discovered using genetic immunization and confirmed in a conventional protein format, will be useful toward the development of a safe and effective glanders vaccine.
    Frontiers in Microbiology 01/2011; 2:227. · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Burkholderia pseudomallei K96243 genome encodes six type VI secretion systems (T6SSs), but little is known about the role of these systems in the biology of B. pseudomallei. In this study, we purified recombinant Hcp proteins from each T6SS and tested them as vaccine candidates in the BALB/c mouse model of melioidosis. Recombinant Hcp2 protected 80% of mice against a lethal challenge with K96243, while recombinant Hcp1, Hcp3, and Hcp6 protected 50% of mice against challenge. Hcp6 was the only Hcp constitutively produced by B. pseudomallei in vitro; however, it was not exported to the extracellular milieu. Hcp1, on the other hand, was produced and exported in vitro when the VirAG two-component regulatory system was overexpressed in trans. We also constructed six hcp deletion mutants (Δhcp1 through Δhcp6) and tested them for virulence in the Syrian hamster model of infection. The 50% lethal doses (LD(50)s) for the Δhcp2 through Δhcp6 mutants were indistinguishable from K96243 (<10 bacteria), but the LD(50) for the Δhcp1 mutant was >10(3) bacteria. The hcp1 deletion mutant also exhibited a growth defect in RAW 264.7 macrophages and was unable to form multinucleated giant cells in this cell line. Unlike K96243, the Δhcp1 mutant was only weakly cytotoxic to RAW 264.7 macrophages 18 h after infection. The results suggest that the cluster 1 T6SS is essential for virulence and plays an important role in the intracellular lifestyle of B. pseudomallei.
    Infection and immunity 02/2011; 79(4):1512-25. · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit vaccines have typically provided less robust immunity, but are safer to administer to a wider variety of people, including immune compromised individuals because they do not reactivate or cause disease. The challenges facing B. mallei and B. pseudomalllei vaccine development include identification of broadly protective antigens, design of efficient vaccine delivery and adjuvant systems, and a better understanding of the correlates of protection from both acute and chronic infection.
    Frontiers in Cellular and Infection Microbiology 01/2013; 3:10.

Full-text

View
91 Downloads
Available from
May 29, 2014