Article

The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice

The Farncombe Family Digestive Health Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
Gastroenterology (Impact Factor: 13.93). 04/2011; 141(2):599-609. DOI: 10.1053/j.gastro.2011.04.052

ABSTRACT Background & AimsAlterations in the microbial composition of the gastrointestinal tract (dysbiosis) are believed to contribute to inflammatory and functional bowel disorders and psychiatric comorbidities. We examined whether the intestinal microbiota affects behavior and brain biochemistry in mice.Methods
Specific pathogen–free (SPF) BALB/c mice, with or without subdiaphragmatic vagotomy or chemical sympathectomy, or germ-free BALB/c mice received a mixture of nonabsorbable antimicrobials (neomycin, bacitracin, and pimaricin) in their drinking water for 7 days. Germ-free BALB/c and NIH Swiss mice were colonized with microbiota from SPF NIH Swiss or BALB/c mice. Behavior was evaluated using step-down and light preference tests. Gastrointestinal microbiota were assessed using denaturing gradient gel electrophoresis and sequencing. Gut samples were analyzed by histologic, myeloperoxidase, and cytokine analyses; levels of serotonin, noradrenaline, dopamine, and brain-derived neurotropic factor (BDNF) were assessed by enzyme-linked immunosorbent assay.ResultsAdministration of oral antimicrobials to SPF mice transiently altered the composition of the microbiota and increased exploratory behavior and hippocampal expression of BDNF. These changes were independent of inflammatory activity, changes in levels of gastrointestinal neurotransmitters, and vagal or sympathetic integrity. Intraperitoneal administration of antimicrobials to SPF mice or oral administration to germ-free mice did not affect behavior. Colonization of germ-free BALB/c mice with microbiota from NIH Swiss mice increased exploratory behavior and hippocampal levels of BDNF, whereas colonization of germ-free NIH Swiss mice with BALB/c microbiota reduced exploratory behavior.Conclusions
The intestinal microbiota influences brain chemistry and behavior independently of the autonomic nervous system, gastrointestinal-specific neurotransmitters, or inflammation. Intestinal dysbiosis might contribute to psychiatric disorders in patients with bowel disorders.

Download full-text

Full-text

Available from: Premysl Bercík, Jun 24, 2014
4 Followers
 · 
399 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perturbations in the prenatal and early life environment can contribute to the development of offspring stress dysregulation, a pervasive symptom in neuropsychiatric disease. Interestingly, the vertical transmission of maternal microbes to offspring and the subsequent bacterial colonization of the neonatal gut overlap with a critical period of brain development. Therefore, environmental factors such as maternal stress that are able to alter microbial populations and their transmission can thereby shape offspring neurodevelopment. As the neonatal gastrointestinal tract is primarily inoculated at parturition through the ingestion of maternal vaginal microflora, disruption in the vaginal ecosystem may have important implications for offspring neurodevelopment and disease risk. Here, we discuss alterations that occur in the vaginal microbiome following maternal insult and the subsequent effects on bacterial assembly of the neonate gut, the production of neuromodulatory metabolites, and the developmental course of stress regulation.
    01/2015; 1:81-88. DOI:10.1016/j.ynstr.2014.10.005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gut microbiota is increasingly considered as a symbiotic partner in the maintenance of good health. Metagenomic approaches could help to discover how the complex gut microbial ecosystem participates in the control of the host's brain development and function, and could be relevant for future therapeutic developments, such as probiotics, prebiotics and nutritional approaches for psychiatric disorders. Previous reviews focused on the effects of microbiota on the central nervous system in in vitro and animal studies. The aim of the present review is to synthetize the current data on the association between microbiota dysbiosis and onset and/or maintenance of major psychiatric disorders, and to explore potential therapeutic opportunities targeting microbiota dysbiosis in psychiatric patients. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
    Pathologie Biologie 11/2014; 63(1). DOI:10.1016/j.patbio.2014.10.003 · 1.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gut-brain axis is the bi-directional communication between the gut and the brain which occurs through multiple pathways that include hormonal, neural and immune mediators. The signals along this axis can originate in the gut, the brain, or both, with the objective of maintaining normal gut function and appropriate behavior. In recent years, the study of gut microbiota has become one of the most important areas in biomedical research. Attention has focused on the role of gut microbiota in determining normal gut physiology and immunity, and more recently on its role as modulator of host behavior ("microbiota-gut-brain axis"). We therefore review the literature on the role of gut microbiota in gut homeostasis and link it with mechanisms that could influence behavior. We discuss the association of dysbiosis with disease with particular focus on functional bowel disorders and its relation to psychological stress. This is of particular interest as exposure to stressors has long been known to increase susceptibility to and severity of gastrointestinal diseases.
    The Journal of Physiology 04/2014; 592(14). DOI:10.1113/jphysiol.2014.273995 · 4.54 Impact Factor