Preparation of silver nanoparticles by chemical reduction method

Colloids and Surfaces A Physicochemical and Engineering Aspects (Impact Factor: 2.11). 01/2005; 256:111-115. DOI: 10.1016/j.colsurfa.2004.12.058

ABSTRACT In the solution containing polyvinyl pyrrolidone (PVP), silver nitrate was reduced by the glucose, and silver particles were generated. The possible reaction process is discussed in this paper. Sodium hydroxide was used to enhance the reaction velocity. When the mole ratio of NaOH to AgNO3 was ranged from 1.4 to 1.6, the colloid kept stable and no Ag+ was traced. The particles and colloids were also analyzed by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–visible (UV–vis) spectrophotometer. The TEM photo indicated that with the increase in PVP, the particles dispersed better; and if the weight ratio of PVP to AgNO3 is no less than 1.5, the particles dispersed individually in a colloid form. The agglomeration of particles also was influenced by the mixing speed of the reactants. The XRD spectrums showed that the particles were silver simple substance if the reductant was sufficient and the mixing speed of the reactants was slow enough.

1 Bookmark
  • Source
    Journal of Membrane Science 09/2014; 466:192–199. · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we report an effective process for preparing silver nanoparticles (Ag NPs) by using Green reduction method of AgNO 3 in interlamellar space of Montmorillonite/Starch Bionanocomposites (MMT/Stc BNCs) suspension with moderate temperature. In here MMT, Starch, -D-glucose and AgNO 3 were used as a solid support, stabilizer, green reducing agent and silver precursor, respectively. Bionanocomposites material based on MMT, starch and silver nanoparticles (Ag/MMT/Stc BNCs) were prepared by adding starch and silver nitrate respectively into montmorillonite (MMT) dispersions in double distill water solution. The crystalline structure, d-spacing of interlayer of MMT, the size distributions, surface Plasmon resonance and functional groups of synthesized Ag NPs in the MMT/Stc BNCs were characterized using Powder X-Ray Diffraction (PXRD), Transmission Electron Microscopy (TEM), UV-visible spectroscopy and Fourier Transform Infrared Spectroscopy (FT-IR). The results obtained from TEM showed that the Ag NPs prepared in the extra surface of MMT layers have larger than Ag NPs intercalated between MMT layers, the particle size of nanoparticles synthesized by this processes were from 9 to 39 nm. Powder X-Ray Diffraction analysis showed that the synthesized Ag NPs crystallized in face centered cubic (fcc) symmetry. With gentle heating, this system is a mild, renewable, inexpensive, and nontoxic reducing agent. The synthesized bionanocomposites are very stable in aqueous solution over a long period of time (i.e., 3 months) without any sign of precipitation. Silver nanoparticles in MMT/Stc suspension could be suitable to use various medical applications. Since MMT is viewed as ecologically and environmentally inert material and used for biological application such as cosmetics and pharmaceutical usage.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the nonlinear response of the silver nanoparticle samples in a low-power regime of electromagnetic field based on nonlocal thermo-optic models. In this work, the experimental investigation of the thermo-optic nonlinear response of Ag colloids containing different size of silver nanoparticles is reported. The colloidal nanoparticle samples were synthesized by nanosecond pulsed laser ablation of Ag bulk in acetone. The sample containing Ag was characterized by linear absorption spectroscopy and transmission electron microscopy. Using the z-scan technique, the behavior of thermal nonlinear refractive index of colloid was studied at different concentrations of silver nanoparticles. Observation of asymmetrical configurations of the z-scan data indicates that nonlinear refraction occurring in the Ag samples is related to the thermo-optical process. The optical limiting here is due to nonlinear refraction of the samples arising from thermal lens formation under low-power CW excitation. When the laser power is low, the self-defocusing effect is mainly dominated by surface plasmon resonance effect. Results show that with increasing concentration of nanoparticles in acetone, the nonlinear refractive index increases while the threshold power of optical limiting decreases.
    Optik - International Journal for Light and Electron Optics 10/2014; · 0.77 Impact Factor


Available from