A secure scheme to share secret color images

Computer Physics Communications (Impact Factor: 3.08). 01/2005; 173:9-16. DOI: 10.1016/j.cpc.2005.07.002
Source: DBLP

ABSTRACT The main goal of this work is to study how discrete dynamical systems can be used to design secret sharing schemes. Specifically, the proposed scheme permits to share secret color images, and it is based on bidimensional cellular automata. The main idea is to analyze how a simple reversible model of computation allows one to compute the shares and then using the reverse computation in order to recover the secret image. Moreover, the proposed scheme exhibits good statistical properties.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stereo correspondence problem comprises an active wide range of research. Many efforts have been made towards efficient solutions to address the various issues of stereo matching. As the improvements in computational resources steadily increase, the demand for real-time applications is getting compulsory. This chapter focuses on the latest improvements in the area of real-time stereo vision. Area-based techniques prove to be more appropriate, handling the stereo correspondence problem aiming at real-time speeds. Their straightforward implementation in hardware enables them suitable in numerous applications such as high-speed tracking and mobile robots, object recognition and navigation, biometrics, vision-guided robotics, threedimensional modelling and many more. Phase-based techniques also allow for efficient realization of such systems, requiring though slightly more complex design methodologies. Additionally, it must be noted that there are many other stereo vision techniques that were not covered by this work, due to the fact that they are mainly targeted in software-based platforms presenting higher processing times, not suitable for real-time operations. FPGA implementations handling the stereo matching problem can be a promising alternative towards real-time speeds. Their uniqueness relies on their architecture and the design methodologies available. Parallel-pipelined processing is able to present great computational capabilities, providing with proper scalability opposed to the serial behaviour of most software-based techniques. On the other hand considering their significantly small volume, low cost, and extensive reconfigurability, they can be oriented towards embedded applications where space and power are significant concerns.
    03/2010; , ISBN: 978-953-307-077-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main goal of this work is to research how neighborhood configurations of two-dimensional cellular automata (2-D CA) can be used to design secret sharing schemes, and then a novel (n, n)-threshold secret image sharing scheme based on 2-D CA is proposed. The basic idea of the scheme is that the original content of a 2-D CA can be reconstructed following a predetermined number of repeated applications of Boolean XOR operation to its neighborhood. The main characteristics of this new scheme are: each shared image has the same size as the original one; the recovered image is exactly the same as the secret image, i.e., there is no loss of resolution or contrast; and the computational complexity is linear. Simulation results and formal analysis demonstrate the correctness and effectiveness of the proposed sharing scheme.
    Optics & Laser Technology 04/2012; 44(3):538–548. · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Computer simulations of complex spatio-temporal patterns using cellular automata may be performed in two alternative ways, the better choice depending on the relative size between the spatial width W of the expected patterns and their corresponding temporal period T. While the traditional timewise updating algorithm is very efficient when W≪T, the complementary spacewise algorithm wins whenever T≪W. Independently of the algorithm used, the key to obtaining exhaustive answers, not just statistical estimates, is to have explicit knowledge of the complete sets of initial conditions that need to be individually tested as sizes grow. This paper reports an efficient algorithm for generating complete sets (without redundancy) of k-vectors of initial conditions allowing one to perform definitive classifications of patterns in systems with a minimal characteristic length k, either spatial or temporal.
    Computer Physics Communications 01/2010; 181:750-755. · 3.08 Impact Factor