Article

HMGB1 Promotes the Differentiation of Th17 via Up-Regulating TLR2 and IL-23 of CD14(+) Monocytes from Patients with Rheumatoid Arthritis.

Department of Immunology, Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, China Department of Laboratory Medicine, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, China The Central Laboratory, Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
Scandinavian Journal of Immunology (Impact Factor: 1.88). 07/2012; 76(5):483-90. DOI: 10.1111/j.1365-3083.2012.02759.x
Source: PubMed

ABSTRACT High-mobility group box 1 (HMGB1) is a non-histone nuclear protein that is released extracellulary and has been implicated in autoimmune disease. Toll-like receptor 2 (TLR2) signalling is thought to be essential for the inflammatory response and for immune disorders. In recent studies, enhanced HMGB1 and TLR2 expressions have been found in rheumatoid arthritis (RA), respectively. The aim of this study is to explore whether HMGB1 stimulation can up-regulate the expression of TLR2 on CD14(+) monocytes from patients with RA and to clarify the subsequent events involving Th17 cells and Th17 cell-associated cytokine changes. Our results showed that the frequency of CD14(+) cells in peripheral blood mononuclear cell (PBMC) was obviously increased, and enhanced expression of TLR2 on CD14(+) monocytes was also found in patients with RA, compared with healthy controls with statistical significance (P < 0.001). In addition, the levels of IL-17, IL-23 and IL-6 in supernatants from cultured monocytes from patients and in patient's plasma were increased, and NF-κB, the downstream target of TLR2, also showed a marked elevation after monocytes were stimulated by HMGB1. This implies that the enhanced TLR2 pathway and Th17 cell polarization may be due to HMGB1 stimulation in rheumatoid arthritis.

2 Followers
 · 
193 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Psoriatic arthritis (PsA) is a chronic inflammatory disease of unknown origin, characterized by erosions and new bone formation. Diagnosis of PsA is mainly clinical and there are no biomarkers available. Moreover in PsA autoantibodies have not been described so far. Indeed an autoimmune origin has been suggested but never proven. Aim of the study was to investigate the possible presence of autoantibodies typically associated with PsA. We used pooled IgG immunoglobulins derived from 30 patients with PsA to screen a random peptide library in order to identify disease relevant autoantigen peptides. Among the selected peptides, one was recognised by nearly all the patients' sera. The identified peptide (PsA peptide: TNRRGRGSPGAL) shows sequence similarities with skin autoantigens, such as fibrillin 3, a constituent of actin microfibrils, desmocollin 3, a constituent of the desmosomes and keratin 78, a component of epithelial cytoskeleton. Interestingly the PsA peptide shares homology with the nebulin-related anchoring protein (N-RAP), a protein localized in the enthesis (point of insertion of a tendon or ligament to the bone), which represents the first affected site during early PsA. Antibodies affinity purified against the PsA peptide recognize fibrillin, desmocollin, keratin and N-RAP. Moreover antibodies directed against the PsA peptide are detectable in 85% of PsA patients. Such antibodies are not present in healthy donors and are present in 13/100 patients with seroposive rheumatoid arthritis (RA). In seronegative RA these antibodies are detectable only in 3/100 patients. Our results indicate that PsA is characterized by the presence of serum autoantibodies crossreacting with an epitope shared by skin and joint antigens.
    PLoS ONE 12/2014; 9(12):e115424. DOI:10.1371/journal.pone.0115424 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed High-Mobility Group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhbitiors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localizationtion, structure, post-translational modification, and identifccation of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
    Molecular Aspects of Medicine 07/2014; DOI:10.1016/j.mam.2014.05.001 · 10.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The innate immune system consists of functionally specialized "modules" that are activated in response to a particular set of stimuli via sensors located on the surface or inside the tissue cells. These cells screen tissues for a wide range of exogenous and endogenous danger/damage-induced signals with the aim to reject or tolerate them and maintain tissue integrity. In this line of thinking, inflammation evolved as an adaptive tool for restoring tissue homeostasis. A number of diseases are mediated by a maladaptation of the innate immune response, perpetuating chronic inflammation and tissue damage. Here, we review recent evidence on the cross talk between innate immune sensors and development of rheumatoid arthritis, osteoarthritis, and aseptic loosening of total joint replacements. In relation to the latter topic, there is a growing body of evidence that aseptic loosening and periprosthetic osteolysis results from long-term maladaptation of periprosthetic tissues to the presence of by-products continuously released from an artificial joint.
    Journal of Long-Term Effects of Medical Implants 01/2014; 24(4):297-317.

Full-text

Download
104 Downloads
Available from
May 22, 2014