Article

Commonality and Specificity of Acupuncture Action at Three Acupoints as Evidenced by fMRI

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, USA.
The American Journal of Chinese Medicine (Impact Factor: 2.63). 01/2012; 40(4):695-712. DOI: 10.1142/S0192415X12500528
Source: PubMed

ABSTRACT Previous work from our team and others has shown that manual acupuncture at LI4 (hegu), ST36 (zusanli), and LV3 (taichong) deactivates a limbic-paralimbic-neocortical brain network, and at the same time activates somatosensory regions of the brain. The objective of the present study was to explore the specificity and commonality of the brain response to manual acupuncture at LI4, ST36, and LV3, acupoints that are located on different meridians and are used to treat pain disorders. We used functional magnetic resonance imaging (fMRI) to monitor the brain responses to acupuncture at three different acupoints; we examined 46 healthy subjects who, according to their psychophysical responses, experienced deqi sensation during acupuncture. Brain responses to stimulation at each of the acupoints were displayed in conjunction with one another to show the spatial distribution. We found clusters of deactivation in the medial prefrontal, medial parietal and medial temporal lobes showing significant convergence of two or all three of the acupoints. The largest regions showing common responses to all three acupoints were the right subgenual BA25, right subgenual cingulate, right isthmus of the cingulum bundle, and right BA31. We also noted differences in major sections of the medial prefrontal and medial temporal lobes, with LI4 predominating in the pregenual cingulate and hippocampal formation, ST36 predominating in the subgenual cingulate, and LV3 predominating in the posterior hippocampus and posterior cingulate. The results suggest that although these acupoints are commonly used for anti-pain and modulatory effects, they may mobilize the same intrinsic global networks, with substantial overlap of common brain regions to mediate their actions. Our findings showing preferential response of certain limbic-paralimbic structures suggests acupoints may also exhibit relative specificity.

0 Followers
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Despite the systematic literature review of the current evidence, we aim to answer the question " is Deqi an indicator of clinical effects in acupuncture treatment?" Methods. We systematically searched CNKI, VIP, Wanfang Data, PubMed, Embase, and the CENTRAL for three types of study: (1) empirical research probing into the role of Deqi in acupuncture; (2) mechanism studies examining the effect of Deqi on physiological parameters in animal models and human subjects; (3) clinical studies that compared the outcome of acupuncture with Deqi with that of acupuncture without Deqi. Two reviewers independently extracted data, undertook qualitative or quantitative analysis, and summarized findings. Results. The ancient Chinese acupuncturists valued the role of Deqi as a diagnostic tool, a prognosis predictor, and a necessary part of the therapeutic procedure. Findings from modern experimental research provided preliminary evidence for the physiological mechanism that produced Deqi. Few clinical studies generated conflicting evidence of the comparative effectiveness of acupuncture with Deqi versus acupuncture without Deqi for a variety of conditions. Conclusion. The current evidence base is not solid enough to draw any conclusion regarding the predicative value of natural Deqi for clinical efficacy or the therapeutic value of manipulation-facilitated Deqi.
    Evidence-based Complementary and Alternative Medicine 07/2013; 2013:750140. DOI:10.1155/2013/750140 · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acupuncture as an oriental natural healing therapy with prolonged history has been extensively utilized in the management of great numbers of disorders. Deqi, a renowned acupuncture needling sensation, is profoundly regarded as the predictor and also the prerequisite of a preferable acupuncture treatment efficacy. Till now, there is still no consistency being reached towards the mechanism of acupuncture Deqi as a result of the discrepancy for publicly acknowledged evidence. Recent visualized research on Deqi using modern technologies has demonstrated possible central mechanism towards it. However, there is a conspicuous paradox underway in the research of cerebral response to acupuncture Deqi. This paper provided a view of up-to-date studies using visualized tools to characterize the brain response to acupuncture Deqi, such as functional magnetic resonance imaging (fMRI) and positron emission tomography/computed tomography (PET/CT). The paradox was extruded to highlight certain reasons from a TCM view. It is hypothesized that acupoints located at different dermal sites, state of participant, and needling manipulation can all contribute to the current paradox. Hence, further studies on acupuncture Deqi should pay more attention to the strategy of experiment design with generalized measurement, valid sham control methods, and more to subjects in diseased condition.
    Evidence-based Complementary and Alternative Medicine 07/2013; 2013:894750. DOI:10.1155/2013/894750 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most neuroimaging studies exploring brain response to different acupoints have been performed in healthy adults. The aim of this study was to compare brain responses to acupuncture at local versus distal acupoints in patients with carpal tunnel syndrome (CTS), who have chronic pain, versus healthy controls (HC) and correlate these responses with median nerve function. Brain response to electroacupuncture (EA; 2Hz) was evaluated with event-related functional MRI (fMRI) in patients with CTS (n=37) and age-matched HC (n=30). EA was applied at acupoints local (PC 7 to TW 5) and distal (SP 6 to LV 4) to the CTS lesions. Brain response in both groups and acupoints included activation of the bilateral secondary somatosensory cortex (S2) and insula, and the contralesional primary somatosensory cortex (cS1). Deactivation was noted in ipsilesional primary somatosensory cortex (S1). A significant difference between local and distal acupoints was found in cS1 for HC, but not CTS. Furthermore, cS1 activation by EA at local acupoints was negatively correlated with median nerve peak sensory latency in HC, but was positively correlated in CTS. No correlation was found for EA at distal acupoints for either group. Brain response to EA differs between CTS and HC and, for local acupoint stimulation, is associated with median nerve function, reflecting the peripheral nerve pathophysiology of CTS.
    Medical Acupuncture 08/2013; 25(4):275-284. DOI:10.1089/acu.2013.0964