Three Murine Leukemia Virus Integration Regions within 100 Kilobases Upstream of c-myb Are Proximal to the 5 ' Regulatory Region of the Gene through DNA Looping

Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Journal of Virology (Impact Factor: 4.65). 07/2012; 86(19):10524-32. DOI: 10.1128/JVI.01077-12
Source: PubMed

ABSTRACT Retroviruses integrated into genomic DNA participate in long-range gene activation from as far away as several hundred kilobases. Hypotheses have been put forth to account for these phenomena, but data have not been provided to support a physical mechanism that explains long-range activation. In murine leukemia virus-induced myeloid leukemia in mice, integrated proviruses have been found upstream of c-myb in three regions, named Mml1, Mml2, and Mml3 (25, 50, and 70 kb upstream, respectively). The transcription factor c-Myb is an oncogene whose dysregulation and/or mutation can lead to human leukemia. We hypothesized that the murine c-myb upstream region contains regulatory elements accessed by the retrovirus. To identify regulatory sites in the murine c-myb upstream region, we looked by chromatin immunoprecipitation with microarray technology (ChIP-on-chip) for histone modifications implicating gene activation in normal cells. H3K4me3, H3K4me1, and H3K9/14ac were enriched at Mml1 and/or Mml2 in the myeloblastic cell line M1, which expresses c-myb. The enrichment of all of these histone marks decreased with differentiation-induced downregulation of the gene in M1 cells but increased and spread in tumor cells containing integrated provirus. Importantly, using chromosome conformation capture (3C)-quantitative PCR assays, interactions between the 5' region, including the promoter and all Mml sites (Mml1, Mml2, and Mml3), were detected due to DNA looping in M1 cells and tumor cells with provirus in Mml1, Mml2, or Mml3. Therefore, our study provides a new mechanism of retrovirus insertional mutagenesis whereby spatial chromatin organization allows distally located provirus, with its own enhancer elements, to access the 5' regulatory region of the gene.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular commitment to differentiation requires a tightly synchronized, spatial-temporal interaction of regulatory proteins with the basic DNA and chromatin. A complex network of mechanisms, involving induction of lineage instructive transcription factors, installation or removal of histone modifications and changes in the DNA methylation pattern locally orchestrate the three dimensional chromatin structure and determine cell fate. Maturation of myeloid lineages from haematopoietic stem cells has emerged as a powerful model to study those principles of chromatin mechanisms in cellular differentiation and lineage fate selection. This review summarizes recent knowledge and puts forward novel ideas on how dynamics in the epigenetic landscape of myeloid cells shape the development, immune-activation and leukaemic transformation outcome.
    Journal of Molecular Biology 08/2014; 427(3). DOI:10.1016/j.jmb.2014.08.015 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety.
    Viruses 11/2014; 6(11):4140-4164. DOI:10.3390/v6114140 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insertional mutagenesis screens of retrovirus-induced mouse tumors have proven valuable in human cancer research and for understanding adverse effects of retroviral-based gene therapies. In previous studies, the assignment of mouse genes to individual retroviral integration sites has been based on close proximity and expression patterns of annotated genes at target positions in the genome. We here employed next-generation RNA sequencing to map retroviral-mouse chimeric junctions genome-wide, and to identify local patterns of transcription activation in T-lymphomas induced by the murine leukemia gamma-retrovirus SL3-3. Moreover, to determine epigenetic integration preferences underlying long-range gene activation by retroviruses, the colocalization propensity with common epigenetic enhancer markers (H3K4Me1 and H3K27Ac) of 6,117 integrations derived from end-stage tumors of more than 2,000 mice was examined.
    Retrovirology 05/2014; 11(1):36. DOI:10.1186/1742-4690-11-36 · 4.77 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014