Sirtuin 1 and sirtuin 3: physiological modulators of metabolism.

Department of Physiology, School of Medicine-Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, Spain.
Physiological Reviews (Impact Factor: 29.04). 07/2012; 92(3):1479-514. DOI: 10.1152/physrev.00022.2011
Source: PubMed

ABSTRACT The sirtuins are a family of highly conserved NAD(+)-dependent deacetylases that act as cellular sensors to detect energy availability and modulate metabolic processes. Two sirtuins that are central to the control of metabolic processes are mammalian sirtuin 1 (SIRT1) and sirtuin 3 (SIRT3), which are localized to the nucleus and mitochondria, respectively. Both are activated by high NAD(+) levels, a condition caused by low cellular energy status. By deacetylating a variety of proteins that induce catabolic processes while inhibiting anabolic processes, SIRT1 and SIRT3 coordinately increase cellular energy stores and ultimately maintain cellular energy homeostasis. Defects in the pathways controlled by SIRT1 and SIRT3 are known to result in various metabolic disorders. Consequently, activation of sirtuins by genetic or pharmacological means can elicit multiple metabolic benefits that protect mice from diet-induced obesity, type 2 diabetes, and nonalcoholic fatty liver disease.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic oncology is an exciting new field in cancer research, offering a new window to cancer's molecular plasticity and promise for the development of effective, cancer-selective therapies and novel biomarkers. It is based on the realization that cancer's unique metabolism (known since Warburg's report in 1923) with suppression of mitochondrial glucose oxidation and upregulation of cytoplasmic glycolysis is not a secondary but a primary event, offering many growth advantages to cancer cells. Many mechanisms have been revealed, including growth factors, oncogenes, and mutations, all contributing to a suppression of mitochondria, similar to what takes place in hypoxia. This suppression leads to inhibition of mitochondria-driven apoptosis, promotes proliferation, and enhances angiogenesis and metastatic potential. A number of molecular tools and small molecules targeting metabolic enzymes, including pyruvate kinase, pyruvate dehydrogenase kinase, isocitrate dehydrogenase, and lactate dehydrogenase, have been developed, inhibiting cancer growth in vitro and in vivo in several cancer types. Several have already entered early-phase trials, a great translational success considering the young age of the field (less than 10 years). Here we review the mechanisms and effects of these metabolic modulators and the rationale for further development. This rapidly accumulating knowledge allows some optimism that this may prove to be a paradigm shift in the way we understand and treat cancer.
    Journal of Molecular Medicine 01/2015; 93(2). DOI:10.1007/s00109-014-1250-2 · 4.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Titanium dioxide (TiO2) nanoparticles (NPs) are manufactured worldwide for a variety of engineering and bioengineering applications. TiO2NPs are frequently used as a material for orthopedic implants. However, to the best of our knowledge, the biocompatibility of TiO2NPs and their effects on osteoblast cells, which are responsible for the growth and remodeling of the human skeleton, have not been thoroughly investigated. In the research reported here, we studied the effects of exposing hFOB 1.19 human osteoblast cells to TiO2NPs (5-15 nm) for 24 and 48 hours. Cell viability, alkaline phosphatase (ALP) activity, cellular uptake of NPs, cell morphology, superoxide anion (O2 (•-2)) generation, superoxide dismutase (SOD) activity and protein level, sirtuin 3 (SIR3) protein level, correlation between manganese (Mn) SOD and SIR, total antioxidant capacity, and malondialdehyde were measured following exposure of hFOB 1.19 cells to TiO2NPs. Exposure of hFOB 1.19 cells to TiO2NPs resulted in: (1) cellular uptake of NPs; (2) increased cytotoxicity and cell death in a time- and concentration-dependent manner; (3) ultrastructure changes; (4) decreased SOD and ALP activity; (5) decreased protein levels of SOD1, SOD2, and SIR3; (6) decreased total antioxidant capacity; (7) increased O2 (•-) generation; and (8) enhanced lipid peroxidation (malondialdehyde level). The linear relationship between the protein level of MnSOD and SIR3 and between O2 (•-) content and SIR3 protein level was observed. Importantly, the cytotoxic effects of TiO2NPs were attenuated by the pretreatment of hFOB 1.19 cells with SOD, indicating the significant role of O2 (•-) in the cell damage and death observed. Thus, decreased expression of SOD leading to increased oxidizing stress may underlie the nanotoxic effects of TiO2NPs on human osteoblasts.
    International Journal of Nanomedicine 01/2015; 10:1095. DOI:10.2147/IJN.S73557 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the possible involvement of Sirtuin 1 (SIRT1) in rat orthotopic liver transplantation (OLT), when Institute Georges Lopez 1 (IGL-1) preservation solution is enriched with trimetazidine (TMZ). Male Sprague-Dawley rats were used as donors and recipients. Livers were stored in IGL-1 preservation solution for 8h at 4 °C, and then underwent OLT according to Kamada's cuff technique without arterialization. In another group, livers were stored in IGL-1 preservation solution supplemented with TMZ, at 10(-6) mol/L, for 8 h at 4 °C and then underwent OLT. Rats were sacrificed 24 h after reperfusion, and liver and plasma samples were collected. Liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity) oxidative stress (malondialdehyde levels), and nicotinamide adenine dinucleotide (NAD(+)), the co-factor necessary for SIRT1 activity, were determined by biochemical methods. SIRT1 and its substrates (ac-FoxO1, ac-p53), the precursor of NAD(+), nicotinamide phosphoribosyltransferase (NAMPT), as well as the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), p-mTOR, p-p70S6K (direct substrate of mTOR), autophagy parameters (beclin-1, LC3B) and MAP kinases (p-p38 and p-ERK) were determined by Western blot. Liver grafts preserved in IGL-1 solution enriched with TMZ presented reduced liver injury and mitochondrial damage compared with those preserved in IGL-1 solution alone. In addition, livers preserved in IGL-1 + TMZ presented reduced levels of oxidative stress. This was consistent with enhanced SIRT1 protein expression and elevated SIRT1 activity, as indicated by decreased acetylation of p53 and FoxO1. The elevated SIRT1 activity in presence of TMZ can be attributed to the enhanced NAMPT protein and NAD(+)/NADH levels. Up-regulation of SIRT1 was consistent with activation of AMPK and inhibition of phosphorylation of mTOR and its direct substrate (p-p70S6K). As a consequence, autophagy mediators (beclin-1 and LC3B) were over-expressed. Furthermore, MAP kinases were regulated in livers preserved with IGL-1 + TMZ, as they were characterized by enhanced p-ERK and decreased p-p38 protein expression. Our study shows that IGL-1 preservation solution enriched with TMZ protects liver grafts from the IRI associated with OLT, through SIRT1 up-regulation.


Available from
May 23, 2014