Evidence of parallels between mercury intoxication and the brain pathology in autism

Institute of Chronic Illnesses, Inc., Silver Spring, MD, USA.
Acta neurobiologiae experimentalis (Impact Factor: 1.29). 07/2012; 72(2):113-53.
Source: PubMed


The purpose of this review is to examine the parallels between the effects mercury intoxication on the brain and the brain pathology found in autism spectrum disorder (ASD). This review finds evidence of many parallels between the two, including: (1) microtubule degeneration, specifically large, long-range axon degeneration with subsequent abortive axonal sprouting (short, thin axons); (2) dentritic overgrowth; (3) neuroinflammation; (4) microglial/astrocytic activation; (5) brain immune response activation; (6) elevated glial fibrillary acidic protein; (7) oxidative stress and lipid peroxidation; (8) decreased reduced glutathione levels and elevated oxidized glutathione; (9) mitochondrial dysfunction; (10) disruption in calcium homeostasis and signaling; (11) inhibition of glutamic acid decarboxylase (GAD) activity; (12) disruption of GABAergic and glutamatergic homeostasis; (13) inhibition of IGF-1 and methionine synthase activity; (14) impairment in methylation; (15) vascular endothelial cell dysfunction and pathological changes of the blood vessels; (16) decreased cerebral/cerebellar blood flow; (17) increased amyloid precursor protein; (18) loss of granule and Purkinje neurons in the cerebellum; (19) increased pro-inflammatory cytokine levels in the brain (TNF-α, IFN-γ, IL-1β, IL-8); and (20) aberrant nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB). This review also discusses the ability of mercury to potentiate and work synergistically with other toxins and pathogens in a way that may contribute to the brain pathology in ASD. The evidence suggests that mercury may be either causal or contributory in the brain pathology in ASD, possibly working synergistically with other toxic compounds or pathogens to produce the brain pathology observed in those diagnosed with an ASD.

Download full-text


Available from: Mark R Geier, Oct 06, 2015
1 Follower
33 Reads
  • Source
    • "Mercury poisoning and autism show very similar symptoms, both mental disturbances and physical disorders (Bernard et al. 2001; Geier et al. 2008). In addition, many parallels between the effects of Hg intoxication on the brain and the brain pathology found in individuals with ASD include dendritic overgrowth, neuroinflammation, brain immune response , oxidative stress and lipid peroxidation, mitochondrial dysfunction, neuronal necrosis, axonal demyelination, and gliosis (Geier et al. 2010; Kern et al. 2012) (Table 1). Collectively, much evidence suggests the biological plausibility of mercury as an etiological agent in autism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: An increasing evidence supports the role of industrial chemicals as contributors to the development of neurobehavioral disorders, including autism spectrum disorders, whose prevalence has progressively increased in recent years. Heavy metals, in particular, are recognized as neurodevelopmental toxins since they can be responsible of fetal damages which lead to neurological defects, developmental delays, learning disabilities and behavioral abnormalities. Most of the reviewed studies reported a relationship between exposure to metals during perinatal and early childhood periods and increased risk for autism. Moreover, the effects resulting from co-exposure to multiple metals should not be underestimated, especially in the assessment of children who live in developing countries or near heavily contaminated sites.
    06/2014; 1(4). DOI:10.1007/s40489-014-0028-3
  • Source
    • "with our findings, Fido and Al-Saad [16] detected higher hair lead, mercury and uranium levels in autistic children compared to healthy controls. In contrast, Kern and colleagues [18] measured hair arsenic, cadmium, lead and mercury levels of autistic children 1-6 years old and found reduced levels of these heavy metals. Lead is a toxic heavy metal with a long half-time in the body. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dilek Kaya Akyuzlu, Zeliha Kayaalti, Esma Soylemez and Tulin Soylemezoglu
  • Source
    • "The developing neuron is the most sensitive target for mercury (Berlin et al. 2007). Studies on neurons in culture find growth impairment at the same mercury concentrations that are found in neonatal infants of amalgam-bearing mothers with no other known exposures (Berlin et al. 2007; Kern et al. 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mercury dental amalgam has a long history of ostensibly safe use despite its continuous release of mercury vapor. Two key studies known as the Children's Amalgam Trials are widely cited as evidence of safety. However, four recent reanalyses of one of these trials now suggest harm, particularly to boys with common genetic variants. These and other studies suggest that susceptibility to mercury toxicity differs among individuals based on multiple genes, not all of which have been identified. These studies further suggest that the levels of exposure to mercury vapor from dental amalgams may be unsafe for certain subpopulations. Moreover, a simple comparison of typical exposures versus regulatory safety standards suggests that many people receive unsafe exposures. Chronic mercury toxicity is especially insidious because symptoms are variable and nonspecific, diagnostic tests are often misunderstood, and treatments are speculative at best. Throughout the world, efforts are underway to phase down or eliminate the use of mercury dental amalgam.
    Biology of Metals 01/2014; 27(1). DOI:10.1007/s10534-013-9700-9 · 2.50 Impact Factor
Show more