Article

Granulocyte chemotaxis and disease expression are differentially regulated by GRK subtype in an acute inflammatory arthritis model (K/BxN)

Duke University, Department of Medicine, Division of Cardiology, Durham, NC 27110, USA
Clinical Immunology (Impact Factor: 3.99). 10/2008; 129(1):115-122. DOI: 10.1016/j.clim.2008.06.008

ABSTRACT Objective
Chemokine receptors are G-protein coupled receptors (GPCRs) phosphorylated by G-protein receptor kinases (GRKs) after ligand-mediated activation. We hypothesized that GRK subtypes differentially regulate granulocyte chemotaxis and clinical disease expression in the K/BxN model.Methods
Clinical, histologic, and cytokine responses in GRK6−/−, GRK5−/−, GRK2+/−, and wildtype mice were evaluated using K/BxN serum transfer. Granulocyte chemotaxis was analyzed by transendothelial migration assays.ResultsBoth GRK6−/− and GRK2+/− mice had increased arthritis disease severity (p < 0.001); whereas GRK5−/− was not different from controls. Acute weight loss was enhanced in GRK6−/− and GRK2+/− mice (p < 0.001, days 3–10). However, GRK6−/− mice uniquely had more weight loss (> 10%), elevated serum IL-6, and enhanced migration toward LTB4 and C5a in vitro.ConclusionsGRK6 and -2, but not GRK5, are involved in the pathogenesis of acute arthritis in the K/BxN model. In particular, GRK6 may dampen inflammatory responses by regulating granulocyte trafficking toward chemoattractants.

Download full-text

Full-text

Available from: Teresa K Tarrant, Sep 22, 2014
0 Followers
 · 
60 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphism at the GPSM3 gene locus is inversely associated with four systemic autoimmune diseases, including rheumatoid arthritis and ankylosing spondylitis. G-protein signaling modulator-3 (GPSM3) expression is most pronounced in myeloid cells, in which it targets heterotrimeric G-protein Gαi subunits of chemokine receptors, critical to immune function. To begin to explore the regulatory role of GPSM3 in monocytes, human THP-1 and primary mouse myeloid cells were cultured under stimulus conditions; GPSM3 was found by immunoblotting to be expressed at highest levels in the mature monocyte. To evaluate the effects of GPSM3 deficiency on a myeloid-dependent autoimmune disease, collagen antibody-induced arthritis (CAIA) was induced in Gpsm3-/- and control mice, which were then analyzed for clinical score, paw swelling, intra-articular proinflammatory markers, and histopathology. Mice lacking GPSM3 were protected from CAIA, and expression of monocyte-representative pro-inflammatory chemokine receptors and cytokines in paws of Gpsm3-/- mice were decreased. Flow cytometry, apoptosis, and transwell chemotaxis experiments were conducted to further characterize the effect of GPSM3 deficiency on survival and chemokine responsiveness of monocytes. GPSM3-deficient myeloid cells had reduced migration ex vivo to CCL2, CX3CL1, and chemerin and enhanced apoptosis in vitro. Our results suggest that GPSM3 is an important regulator of monocyte function involving mechanisms of differentiation, survival, and chemotaxis, and deficiency in GPSM3 expression is protective in acute inflammatory arthritis.
    Molecular Immunology 12/2012; 54(2):193-198. DOI:10.1016/j.molimm.2012.12.001 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G-protein-coupled receptor kinase 2 (GRK2) is a member of a kinase family originally discovered for its role in the phosphorylation and desensitization of G-protein-coupled receptors. It is expressed in high levels in myeloid cells and its levels are altered in many inflammatory disorders including sepsis. To address the physiological role of myeloid cell-specific GRK2 in inflammation, we generated mice bearing GRK2 deletion in myeloid cells (GRK2▵mye). GRK2▵mye mice exhibited exaggerated inflammatory cytokine/chemokine production, and organ injury in response to lipopolysaccharide (LPS, a TLR4 ligand) when compared to wild-type littermates (GRK2fl/fl). Consistent with this, peritoneal macrophages from GRK2▵mye mice showed enhanced inflammatory cytokine levels when stimulated with LPS. Our results further identify TLR4-induced NF-κB1p105-ERK pathway to be selectively regulated by GRK2. LPS-induced activation of NF-κB1p105-MEK-ERK pathway is significantly enhanced in the GRK2▵mye macrophages compared to GRK2fl/fl cells and importantly, inhibition of the p105 and ERK pathways in the GRK2▵mye macrophages, limits the enhanced production of LPS-induced cytokines/chemokines. Taken together, our studies reveal previously undescribed negative regulatory role for GRK2 in TLR4-induced p105-ERK pathway as well as in the consequent inflammatory cytokine/chemokine production and endotoxemia in mice.
    Journal of Cellular Physiology 03/2011; 226(3):627-37. DOI:10.1002/jcp.22384 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GRK2 is a ubiquitous member of the G protein-coupled receptor kinase (GRK) family that appears to play a central, integrative role in signal transduction cascades. GRKs participate together with arrestins in the regulation of G protein-coupled receptors (GPCR), a family of hundreds of membrane proteins of key physiological and pharmacological importance, by triggering receptor desensitization from G proteins and GPCR internalization, and also by helping assemble macromolecular signalosomes in the receptor environment acting as agonist-regulated adaptor scaffolds, thus contributing to signal propagation. In addition, emerging evidence indicates that GRK2 can phosphorylate a growing number of non-GPCR substrates and associate with a variety of proteins related to signal transduction, thus suggesting that this kinase could also have diverse 'effector' functions. We discuss herein the increasing complexity of such GRK2 'interactome', with emphasis on the recently reported roles of this kinase in cell migration and cell cycle progression and on the functional impact of the altered GRK2 levels observed in several relevant cardiovascular, inflammatory or tumour pathologies. Deciphering how the different networks of potential GRK2 functional interactions are orchestrated in a stimulus, cell type or context-specific way is critical to unveil the contribution of GRK2 to basic cellular processes, to understand how alterations in GRK2 levels or functionality may participate in the onset or development of several cardiovascular, tumour or inflammatory diseases, and to assess the feasibility of new therapeutic strategies based on the modulation of the activity, levels or specific interactions of GRK2.
    British Journal of Pharmacology 06/2010; 160(4):821-32. DOI:10.1111/j.1476-5381.2010.00727.x · 4.99 Impact Factor