Conference Paper

Development of cold-slumping glass mirrors for imaging Cherenkov telescopes

DOI: 10.1117/12.790631 Conference: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series

ABSTRACT The development of lightweight glass mirrors manufactured via cold-slumping technique for Imaging Atmospheric Cherenkov Telescope is presented. The mirror elements have a sandwich-like structure where the reflecting and backing facets are composed by glass sheets with an interposed honeycomb aluminum core. The reflecting coating is deposited in high vacuum by means of physical vapor deposition and consists of aluminum with an additional protective layer of SiO2. The mirror fabrication and environmental qualification by accelerated ageing, thermal cycling and coating adhesion are presented together with the optical performances measured as angular resolution and reflectivity obtained on spherical, 1 squared meter mirror prototypes.

1 Bookmark
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ASTRI is a Flagship Project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics, INAF. One of the main aims of the ASTRI Project is the design, construction and verification on-field of a dual mirror (2M) end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array. The ASTRI SST-2M prototype adopts the Schwarzschild-Couder design, and a camera based on SiPM (Silicon Photo Multiplier); it will be assembled at the INAF astronomical site of Serra La Nave on mount Etna (Catania, Italy) within mid 2014, and will start scientific validation phase soon after. The peculiarities of the optical design and of the SiPM bandpass pushed towards specifically optimized choices in terms of reflective coatings for both the primary and the secondary mirror. In particular, multi-layer dielectric coatings, capable of filtering out the large Night Sky Background contamination at wavelengths $\lambda \gtrsim 700$ nm have been developed and tested, as a solution for the primary mirrors. Due to the conformation of the ASTRI SST-2M camera, a reimaging system based on thin pyramidal light guides could be optionally integrated aiming to increase the fill factor. An anti-reflective coating optimized for a wide range of incident angles faraway from normality was specifically developed to enhance the UV-optical transparency of these elements. The issues, strategy, simulations and experimental results are thoroughly presented.
    07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The next generation of Imaging Atmospheric Cherenkov Telescope will explore the uppermost end of the Very High Energy domain up to about few hundreds of TeV with unprecedented sensitivity, angular resolution and imaging quality. To this end, the Italian National Institute of Astrophysics (INAF) is currently developing a scientific and technological telescope prototype for the implementation of the Cherenkov Telescope Array (CTA) observatory. The Italian ASTRI program foresees the full design, development, installation and calibration of a Small Size 4-meter class Telescope, adopting an aplanatic, wide-field, double-reflection optical layout in a Schwarzschild-Couder configuration. In this paper we discuss about the technological solutions adopted for the telescope and for the mirrors. In particular we focus on the structural and electro-mechanical design of the telescope, now under fabrication. The results on the optical performance derived from mirror prototypes are here described, too.
    Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; 09/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Cherenkov Telescope Array (CTA) is the next generation very high-energy gamma-ray observatory, with at least 10 times higher sensitivity than current instruments. CTA will comprise several tens of Imaging Atmospheric Cherenkov Telescopes (IACTs) operated in array-mode and divided into three size classes: large, medium and small telescopes. The total reflective surface could be up to 10,000 m2 requiring unprecedented technological efforts. The properties of the reflector directly influence the telescope performance and thus constitute a fundamental ingredient to improve and maintain the sensitivity. The R&D status of lightweight, reliable and cost-effective mirror facets for the CTA telescope reflectors for the different classes of telescopes is reviewed in this paper.
    10/2013;

Full-text (2 Sources)

View
13 Downloads
Available from
Jun 2, 2014