Article

Current translational and clinical practices in hematopoietic cell and gene therapy.

Department of Virology and Laboratory for Cellular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
Cytotherapy (Impact Factor: 3.1). 08/2012; 14(7):775-90. DOI: 10.3109/14653249.2012.694420
Source: PubMed

ABSTRACT Clinical trials over the last 15 years have demonstrated that cell and gene therapies for cancer, monogenic and infectious disease are feasible and can lead to long-term benefit for patients. However, these trials have been limited to proof-of-principle and were conducted on modest numbers of patients or over long periods of time. In order for these studies to move towards standard practice and commercialization, scalable technologies for the isolation, ex vivo manipulation and delivery of these cells to patients must be developed. Additionally, regulatory strategies and clinical protocols for the collection, creation and delivery of cell products must be generated. In this article we review recent progress in hematopoietic cell and gene therapy, describe some of the current issues facing the field and discuss clinical, technical and regulatory approaches used to navigate the road to product development.

2 Followers
 · 
89 Views
  • 02/2013; DOI:10.1016/j.trsl.2013.01.004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the success of antiretroviral therapy in suppressing HIV-1 replication and extending the life of HIV-1 infected individuals, this regimen is associated with risks for non-AIDS morbidity and mortality, requires life commitment, and has a high cost. In this context, gene therapy approaches that have the potential to cure HIV-1 infection present a clear option for eradication of the virus in the next decades. Gene therapy must overcome concerns related to its applicability to HIV-1 infection, the safety of cytotoxic conditioning required for cell-based approaches, clinical trial design, selection of gene-modified cells, and the restrictive cost of manufacturing and technology. These concerns are discussed herein in the context of the most relevant gene therapy studies conducted so far in HIV/AIDS.
    Current HIV/AIDS Reports 01/2014; 11(1). DOI:10.1007/s11904-013-0197-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. Areas covered: In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. Expert opinion: Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.
    Expert opinion on biological therapy 03/2013; 13(3):437-45. DOI:10.1517/14712598.2013.761968 · 3.65 Impact Factor