Article

Redirecting Valvular Myofibroblasts into Dormant Fibroblasts through Light-mediated Reduction in Substrate Modulus

Brigham and Women's Hospital, Harvard Medical School, United States of America
PLoS ONE (Impact Factor: 3.53). 07/2012; 7(7):e39969. DOI: 10.1371/journal.pone.0039969
Source: PubMed

ABSTRACT Fibroblasts residing in connective tissues throughout the body are responsible for extracellular matrix (ECM) homeostasis and repair. In response to tissue damage, they activate to become myofibroblasts, which have organized contractile cytoskeletons and produce a myriad of proteins for ECM remodeling. However, persistence of myofibroblasts can lead to fibrosis with excessive collagen deposition and tissue stiffening. Thus, understanding which signals regulate de-activation of myofibroblasts during normal tissue repair is critical. Substrate modulus has recently been shown to regulate fibrogenic properties, proliferation and apoptosis of fibroblasts isolated from different organs. However, few studies track the cellular responses of fibroblasts to dynamic changes in the microenvironmental modulus. Here, we utilized a light-responsive hydrogel system to probe the fate of valvular myofibroblasts when the Young's modulus of the substrate was reduced from ~32 kPa, mimicking pre-calcified diseased tissue, to ~7 kPa, mimicking healthy cardiac valve fibrosa. After softening the substrata, valvular myofibroblasts de-activated with decreases in α-smooth muscle actin (α-SMA) stress fibers and proliferation, indicating a dormant fibroblast state. Gene signatures of myofibroblasts (including α-SMA and connective tissue growth factor (CTGF)) were significantly down-regulated to fibroblast levels within 6 hours of in situ substrate elasticity reduction while a general fibroblast gene vimentin was not changed. Additionally, the de-activated fibroblasts were in a reversible state and could be re-activated to enter cell cycle by growth stimulation and to express fibrogenic genes, such as CTGF, collagen 1A1 and fibronectin 1, in response to TGF-β1. Our data suggest that lowering substrate modulus can serve as a cue to down-regulate the valvular myofibroblast phenotype resulting in a predominantly quiescent fibroblast population. These results provide insight in designing hydrogel substrates with physiologically relevant stiffness to dynamically redirect cell fate in vitro.

Download full-text

Full-text

Available from: Leslie A Leinwand, Aug 23, 2015
1 Follower
 · 
143 Views
    • "Thus there is an urgent need to construct an in vitro cardiac fibrosis model for successful discovery of therapy. Berry et al [38] reported that a significant difference of myocardium compliance existed between fibrosis area (∼10 kPa) and surrounding intact area post-infarction (∼40 kPa), and recent evidences [39] [40] [41] suggested the transition between fibroblasts and myofibroblasts could be orchestrated biophysically by varying the stiffness of cell matrices. Therefore, we anticipate that the construction of an in vitro cardiac fibrosis model could be realized by regulating mechanotransduction of cardiac fibroblasts via patterning the stiffness of extracellular matrix. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiac fibrosis greatly impairs normal heart function post infarction and there is no effective anti-fibrotic drug developed at present. The current therapies for cardiac infarction mainly take effect by eliminating occlusion in coronary artery by thrombolysis drugs, vascular stent grafting or heart bypass operation, which are capable to provide sufficient blood flow for intact myocardium yet showed subtle efficacy in ameliorating fibrosis condition. The advances of in vitro cell/tissue models open new avenues for drug assessment due to the low cost, good controllability and availability as well as the convenience for operation as compared to the animal models. To our knowledge, no proper biomimetic in vitro cardiac fibrosis model has been reported yet. Here we engineered an in vitro cardiac fibrosis model using heart-derived fibroblasts, and the fibrogenesis was recapitulated by patterning the substrate rigidity which mimicked the mechanical heterogeneity of myocardium post-infarction. Various biomarkers for cardiac fibrosis were assayed to validate the biomimicry of the engineered platform. Subsequent addition of Rho-associated protein kinase (ROCK) pathway inhibitor reduced the ratio of myofibroblasts, indicating the feasibility of applying this platform in screening anti-fibrosis drugs.
    Biofabrication 12/2014; 6(4):045009. DOI:10.1088/1758-5082/6/4/045009 · 4.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineered replacement heart valves may be capable of overcoming the lack of growth potential intrinsic to current non-viable prosthetics, and thus could potentially serve as permanent replacements in the surgical repair of pediatric valvular lesions. However, the evaluation of candidate combinations of cells and scaffolds lacks a biomimetic in vitro model with broadly tunable, anisotropic and elastomeric structural-mechanical properties. Toward establishing such an in vitro model, in the current study, porcine aortic and pulmonary valvular interstitial cells (i.e., biomimetic cells) were cultivated on anisotropic, micro-molded poly(glycerol sebacate) scaffolds (i.e., biomimetic scaffolds). Following 14 and 28 days static culture, cell-seeded scaffolds and unseeded controls were assessed for their mechanical properties, and cell-seeded scaffolds were further characterized by confocal fluorescence and scanning electron microscopy, and by collagen and DNA assays. PGS micro-molding yielded scaffolds with anisotropic stiffnesses resembling those of native valvular tissues in the low stress-strain ranges characteristic of physiologic valvular function. Scaffold anisotropy was largely retained upon cultivation with valvular interstitial cells; while the mechanical properties of unseeded scaffolds progressively diminished, cell-seeded scaffolds either retained or exceeded initial mechanical properties. Retention of mechanical properties in cell-seeded scaffolds paralleled the accretion of collagen, which increased significantly from 14 to 28 days. This study demonstrates that valvular interstitial cells can be cultivated on anisotropic poly(glycerol sebacate) scaffolds to yield biomimetic in vitro models with which clinically relevant cells and future scaffold designs can be evaluated.
    Acta biomaterialia 01/2013; 9(4). DOI:10.1016/j.actbio.2013.01.001 · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poly(ethylene glycol) (PEG) hydrogels represent a versatile material scaffold for culturing cells in two or three dimensions with the advantages of limited protein fouling and cytocompatible polymerization to enable cell encapsulation. By using light-based chemistries for gelation and for incorporating biomolecules into the network, dynamic niches can be created that facilitate the study of how cells respond to user-dictated or cell-dictated changes in environmental signals. Specifically, we demonstrate integration of a photo-cleavable molecule into network cross-links and into pendant functional groups to construct gels with biophysical and biochemical properties that are spatiotemporally tunable with light. Complementary to this approach, an enzymatically cleavable peptide sequence can be introduced within hydrogel networks, in this case through photoinitiated addition reactions between thiol-containing biomacromolecules and ene-containing synthetic polymers, to enable cellular remodeling of their surrounding hydrogel microenvironment. With such tunable material platforms, researchers can employ a systematic approach for 3D cell culture experiments, spatially and temporally modulating physical properties (e.g., stiffness) as well as biological signals (e.g., adhesive ligands) to study cell behavior in response to environmental stimuli. Collectively, these material systems suggest routes for new experimentation to study and manipulate cellular functions in four dimensions.
    03/2013; 38(03). DOI:10.1557/mrs.2013.54
Show more