Article

Control of Virulence by Small RNAs in Streptococcus pneumoniae

Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 07/2012; 8(7):e1002788. DOI: 10.1371/journal.ppat.1002788
Source: PubMed

ABSTRACT Author Summary
Pneumonia is a leading cause of childhood mortality worldwide, resulting in more deaths in young children than any other infectious disease. One of the leading causes of pneumonia is the human pathogen, Streptococcus pneumoniae, the causative agent of over six million infections each year in the United States. Understanding how bacterial pathogens rapidly respond to dynamic host environments is a central aspect of microbial pathogenesis. Accumulating evidence has implicated sRNAs as vital regulators in a number of important cellular processes though few have been implicated in virulence. In our investigations we have applied next-generation sequencing to define the sRNA repertoire of S. pneumoniae. In addition, we utilized both targeted genetic knockouts and transposon mutagenesis to show that a significant portion of these sRNAs play important roles at various stages of pneumococcal pathogenesis. These data represent the first example of sRNAs being involved in pneumococcal pathogenesis and greatly expand the number of sRNAs that play important roles in bacterial pathogenesis.

Download full-text

Full-text

Available from: Yong-Dong Wang, Jul 02, 2015
0 Followers
 · 
237 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Streptococcus pneumoniae is a prominent human pathogen responsible for many severe diseases and the leading cause of childhood mortality worldwide. The pneumococcus is remarkably adept at colonizing and infecting different niches in the human body, and its adaptation to dynamic host environment is a central aspect of its pathogenesis. In the last decade, increasing findings have evidenced small RNAs (sRNAs) as vital regulators in a number of important processes in bacteria. In S. pneumoniae, a small antisense RNA was first discovered in the pMV158 plasmid as a copy number regulator. More recently, genome-wide screens revealed that the pneumococcal genome also encodes multiple sRNAs, many of which have important roles in virulence while some are implicated in competence control. The knowledge of the sRNA-mediated regulation in pneumococcus remains very limited, and future research is needed for better understanding of functions and mechanisms. Here, we provide a comprehensive summary of the current knowledge on sRNAs from Streptococcus pneumoniae, focusing mainly on the trans-encoded sRNAs.
    Frontiers in Genetics 04/2015; 6. DOI:10.3389/fgene.2015.00126
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA-based mechanisms of regulation represent a ubiquitous class of regulators that are associated with diverse processes including nutrient sensing, stress response, modulation of horizontal gene transfer, and virulence factor expression. While better studied in Gram-negative bacteria, the literature is replete with examples of the importance of RNA-mediated regulatory mechanisms to the virulence and fitness of Gram-positives. Regulatory RNAs are classified as cis-acting, e.g. riboswitches, which modulate the transcription, translation, or stability of co-transcribed RNA, or trans-acting, e.g. small regulatory RNAs, which target separate mRNAs or proteins. The group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive bacterial pathogen from which several regulatory RNA mechanisms have been characterized. The study of RNA-mediated regulation in GAS has uncovered novel concepts with respect to how small regulatory RNAs may positively regulate target mRNA stability, and to how CRISPR RNAs are processed from longer precursors. This review provides an overview of RNA-mediated regulation in Gram-positive bacteria, and is highlighted with specific examples from GAS research. The key roles that these systems play in regulating bacterial virulence are discussed and future perspectives outlined.
    Molecular Microbiology 08/2014; 94(1). DOI:10.1111/mmi.12742 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors, and enable the bacteria to survive and proliferate after host infection. Regulatory RNAs are now recognized as important components of these networks, and their study may not only identify new approaches to combat infectious diseases but also reveal new general control mechanisms involved in bacterial gene expression. In this review, we illustrate the diversity of regulatory RNAs in bacterial pathogens, their mechanism of action, and how they can be integrated into the regulatory circuits that govern virulence-factor production.
    Cold Spring Harbor Perspectives in Medicine 09/2013; 3(9). DOI:10.1101/cshperspect.a010298 · 7.56 Impact Factor