Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance.

Corresponding author: Feng Liu, .
Diabetes (Impact Factor: 8.47). 07/2012; 61(11):2776-86. DOI: 10.2337/db12-0169
Source: PubMed

ABSTRACT The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad(-/-)). In addition, the fDsbA-L/Ad(-/-) mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The increasing prevalence of diabetes and its complications heralds an alarming situation worldwide. Obesity-associated changes in circulating adiponectin concentrations have the capacity to predict insulin sensitivity and are a link between obesity and a number of vascular diseases. One obvious consequence of obesity is a decrease in circulating levels of adiponectin, which are associated with cardiovascular disorders and associated vascular comorbidities. Human and animal studies have demonstrated decreased adiponectin to be an independent risk factor for cardiovascular disease. However, in animal studies, increased circulating adiponectin alleviates obesity-induced endothelial dysfunction and hypertension, and also prevents atherosclerosis, myocardial infarction, and diabetic cardiac tissue disorders. Further, metabolism of a number of foods and medications are affected by induction of adiponectin. Adiponectin has beneficial effects on cardiovascular cells via its antidiabetic, anti-inflammatory, antioxidant, antiapoptotic, antiatherogenic, vasodilatory, and antithrombotic activity, and consequently has a favorable effect on cardiac and vascular health. Understanding the molecular mechanisms underlying the regulation of adiponectin secretion and signaling is critical for designing new therapeutic strategies. This review summarizes the recent evidence for the physiological role and clinical significance of adiponectin in vascular health, identification of the receptor and post-receptor signaling events related to the protective effects of the adiponectin system on vascular compartments, and its potential use as a target for therapeutic intervention in vascular disease.
    Vascular Health and Risk Management 01/2015; 11:55. DOI:10.2147/VHRM.S48753
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disulfide-bond A Oxidoreductase-like protein (DsbA-L) possesses beneficial effects such as promoting adiponectin multimerization and stability, increasing insulin sensitivity, and enhancing energy metabolism. The expression level of DsbA-L is negatively correlated with obesity in mice and humans, but the underlying mechanisms remain unknown. To address this question, we generated reporter gene constructs containing the promoter sequence of the mouse DsbA-L gene. Deletion analysis showed that the proximal promoter of mouse DsbA-L is located between -186 to -34 bp relative to the transcription start site. In silico analysis identified a putative Sp1 transcription factor binding site in the first intron of DsbA-L gene. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Sp1 bound to this intron region in vitro and in intact cells. Overexpression of Sp1 or suppressing Sp1 expression by siRNA reduced or increased DsbA-L promoter activity, respectively. The binding activity of Sp1 was gradually decreased during 3T3-L1 cells differentiation, and was significantly increased in adipose tissues of obese mice. Our results identify Sp1 as an inhibitor of DsbA-L gene transcription and the Sp1-mediated inhibition of DsbA-L gene expression may provide a mechanism underlying obesity-induced adiponectin down-regulation and insulin resistance.
    Diabetes 07/2014; DOI:10.2337/db14-0182 · 8.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modifications (PTMs) of the adiponectin molecule are essential for its full bioactivity, and defects in PTMs leading to its defective production and multimerization have been linked to the mechanisms of insulin resistance, obesity, and type-2 diabetes. Here we observed that, in differentiated 3T3-L1 adipocytes, decreased insulin signaling caused by blocking of insulin receptors (InsR) with an anti-InsR blocking antibody, increased rates of adiponectin secretion, whereas concomitant elevations in insulin levels counteracted this effect. Adenosine monophosphate-activated protein kinase (AMPK) signaling regulated adiponectin production by modulating the expression of adiponectin receptors, the secretion of adiponectin, and eventually the expression of adiponectin itself. We found that lysyl hydroxylases (LHs) and prolyl hydroxylases (PHs) were expressed in white-adipose tissue of ob/ob mice, wherein LH3 levels were increased compared with controls. In differentiated 3T3-L1 adipocytes, both non-specific inhibition of LHs and PHs by dipyridyl, and specific inhibition of LHs by minoxidil and of P4H with ethyl-3,4-dihydroxybenzoate, caused significant suppression of adiponectin production, more particularly of the higher-order isoforms. Transient gene knock-down of LH3 (Plod3) caused a suppressive effect, especially on the high molecular-weight (HMW) isoforms. These data indicate that PHs and LHs are both required for physiological adiponectin production and in particular are essential for the formation/secretion of the HMW isoforms.
    Molecular and Cellular Endocrinology 09/2014; DOI:10.1016/j.mce.2014.09.014 · 4.24 Impact Factor

Full-text (3 Sources)

Available from
Jun 2, 2014