Article

Cerebral blood flow and gray matter volume covariance patterns of cognition in aging

Cognitive Neuroscience Division of the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York
Human Brain Mapping (Impact Factor: 6.92). 12/2013; 34(12). DOI: 10.1002/hbm.22142
Source: PubMed

ABSTRACT Advancing age results in altered cognitive and neuroimaging-derived markers of neural integrity. Whether cognitive changes are the result of variations in brain measures remains unclear and relating the two across the lifespan poses a unique set of problems. It must be determined whether statistical associations between cognitive and brain measures truly exist and are not epiphenomenal due solely to their shared relationships with age. The purpose of this study was to determine whether cerebral blood flow (CBF) and gray matter volume (GMV) measures make unique and better predictions of cognition than age alone. Multivariate analyses identified brain-wide covariance patterns from 35 healthy young and 23 healthy older adults using MRI-derived measures of CBF and GMV related to three cognitive composite scores (i.e., memory, fluid ability, and speed/attention). These brain-cognitive relationships were consistent across the age range, and not the result of epiphenomenal associations with age and each imaging modality provided its own unique information. The CBF and GMV patterns each accounted for unique aspects of cognition and accounted for nearly all the age-related variance in the cognitive composite scores. The findings suggest that measures derived from multiple imaging modalities explain larger amounts of variance in cognition providing a more complete understanding of the aging brain. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc.

Download full-text

Full-text

Available from: Jason Randall Steffener, Jul 07, 2015
1 Follower
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many studies have observed altered neurofunctional and structural organization in the aging brain. These observations from functional neuroimaging studies show a shift in brain activity from the posterior to the anterior regions with aging (PASA model), as well as a decrease in cortical thickness, which is more pronounced in the frontal lobe followed by the parietal, occipital, and temporal lobes (retrogenesis model). However, very little work has been done using diffusion MRI (dMRI) with respect to examining the structural tissue alterations underlying these neurofunctional changes in the gray matter. Thus, for the first time, we propose to examine gray matter changes using diffusion MRI in the context of aging. In this work, we propose a novel dMRI based measure of gray matter “heterogeneity” that elucidates these functional and structural models (PASA and retrogenesis) of aging from the viewpoint of diffusion MRI. In a cohort of 85 subjects (all males, ages 15–55 years), we show very high correlation between age and “heterogeneity” (a measure of structural layout of tissue in a region-of-interest) in specific brain regions. We examine gray matter alterations by grouping brain regions into anatomical lobes as well as functional zones. Our findings from dMRI data connects the functional and structural domains and confirms the “retrogenesis” hypothesis of gray matter alterations while lending support to the neurofunctional PASA model of aging in addition to showing the preservation of paralimbic areas during healthy aging. Hum Brain Mapp, 2013. © 2013 Wiley Periodicals, Inc.
    Human Brain Mapping 08/2014; 35(8). DOI:10.1002/hbm.22441 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain structure varies between people in a markedly organized fashion. Communities of brain regions co-vary in their morphological properties. For example, cortical thickness in one region influences the thickness of structurally and functionally connected regions. Such networks of structural co-variance partially recapitulate the functional networks of healthy individuals and the foci of grey matter loss in neurodegenerative disease. This architecture is genetically heritable, is associated with behavioural and cognitive abilities and is changed systematically across the lifespan. The biological meaning of this structural co-variance remains controversial, but it appears to reflect developmental coordination or synchronized maturation between areas of the brain. This Review discusses the state of current research into brain structural co-variance, its underlying mechanisms and its potential value in the understanding of various neurological and psychiatric conditions.
    Nature Reviews Neuroscience 03/2013; 14. DOI:10.1038/nrn3465 · 31.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Functional imaging or diffusion-weighted imaging techniques are widely used to understand brain connectivity at the systems level and its relation to normal neurodevelopment, cognition or brain disorders. It is also possible to extract information about brain connectivity from the covariance of morphological metrics derived from anatomical MRI. These covariance patterns may arise from genetic influences on normal development and aging, from mutual trophic reinforcement as well as from experience-related plasticity. This review describes the basic methodological strategies, the biological basis of the observed covariance as well as applications in normal brain and brain disease before a final review of future prospects for the technique.
    NeuroImage 05/2013; 80. DOI:10.1016/j.neuroimage.2013.05.054 · 6.13 Impact Factor