Role of SHP2 phosphatase in KIT-induced transformation: identification of SHP2 as a druggable target in diseases involving oncogenic KIT

Department of Pediatrics, Herman B. Wells Center for Pediatric Research and.
Blood (Impact Factor: 9.78). 07/2012; 120(13):2669-78. DOI: 10.1182/blood-2011-08-375873
Source: PubMed

ABSTRACT Intracellular mechanism(s) that contribute to promiscuous signaling via oncogenic KIT in systemic mastocytosis and acute myelogenous leukemia are poorly understood. We show that SHP2 phosphatase is essential for oncogenic KIT-induced growth and survival in vitro and myeloproliferative disease (MPD) in vivo. Genetic disruption of SHP2 or treatment of oncogene-bearing cells with a novel SHP2 inhibitor alone or in combination with the PI3K inhibitor corrects MPD by disrupting a protein complex involving p85α, SHP2, and Gab2. Importantly, a single tyrosine at position 719 in oncogenic KIT is sufficient to develop MPD by recruiting p85α, SHP2, and Gab2 complex to oncogenic KIT. Our results demonstrate that SHP2 phosphatase is a druggable target that cooperates with lipid kinases in inducing MPD.


Available from: Raghuveer Singh Mali, May 29, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cell (HSC) function is regulated by activation of receptor tyrosine kinases (RTKs). Receptor protein tyrosine phosphatases (PTPs) counterbalance RTK signaling; however, the functions of receptor PTPs in HSCs remain incompletely understood. We found that a receptor PTP, PTPσ, was substantially overexpressed in mouse and human HSCs compared with more mature hematopoietic cells. Competitive transplantation of bone marrow cells from PTPσ-deficient mice revealed that the loss of PTPσ substantially increased long-term HSC-repopulating capacity compared with BM cells from control mice. While HSCs from PTPσ-deficient mice had no apparent alterations in cell-cycle status, apoptosis, or homing capacity, these HSCs exhibited increased levels of activated RAC1, a RhoGTPase that regulates HSC engraftment capacity. shRNA-mediated silencing of PTPσ also increased activated RAC1 levels in wild-type HSCs. Functionally, PTPσ-deficient BM cells displayed increased cobblestone area-forming cell (CAFC) capacity and augmented transendothelial migration capacity, which was abrogated by RAC inhibition. Specific selection of human cord blood CD34+CD38-CD45RA-lin- PTPσ- cells substantially increased the repopulating capacity of human HSCs compared with CD34+CD38-CD45RA-lin- cells and CD34+CD38-CD45RA-lin-PTPσ+ cells. Our results demonstrate that PTPσ regulates HSC functional capacity via RAC1 inhibition and suggest that selecting for PTPσ-negative human HSCs may be an effective strategy for enriching human HSCs for transplantation.
    Journal of Clinical Investigation 11/2014; 125(1). DOI:10.1172/JCI77866 · 13.77 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phosphatases of regenerating liver (PRLs), consisting PRL1, PRL2 and PRL3, are dual-specificity protein phosphatases that have been implicated as biomarkers and therapeutic targets in several solid tumors. However, their roles in hematological malignancies are largely unknown. Recent findings demonstrate that PRL2 is important for hematopoietic stem cell self-renewal and proliferation. In addition, both PRL2 and PRL3 are highly expressed in some hematological malignancies, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Moreover, PRL deficiency impairs the proliferation and survival of leukemia cells through regulating oncogenic signaling pathways. While PRLs are potential novel therapeutic targets in hematological malignancies, their exact biological function and cellular substrates remain unclear. This review will discuss how PRLs regulate hematopoietic stem cell behavior, what signaling pathways are regulated by PRLs, and how to target PRLs in hematological malignancies. An improved understanding of how PRLs function and how they are regulated may facilitate the development of PRL inhibitors that are effective in cancer treatment.
    Cell cycle (Georgetown, Tex.) 09/2014; 13(18):2827-2835. DOI:10.4161/15384101.2014.954448 · 5.01 Impact Factor