Article

Dual inhibition of canonical and noncanonical NF-κB pathways demonstrates significant antitumor activities in multiple myeloma.

Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
Clinical Cancer Research (Impact Factor: 7.84). 07/2012; 18(17):4669-81. DOI: 10.1158/1078-0432.CCR-12-0779
Source: PubMed

ABSTRACT NF-κB transcription factor plays a key role in the pathogenesis of multiple myeloma in the context of the bone marrow microenvironment. Both canonical and noncanonical pathways contribute to total NF-κB activity. Recent studies have shown a critical role for the noncanonical pathway: selective inhibitors of the canonical pathway present a limited activity, mutations of the noncanonical pathway are frequent, and bortezomib-induced cytotoxicity cannot be fully attributed to inhibition of canonical NF-κB activity.
Multiple myeloma cell lines, primary patient cells, and the human multiple myeloma xenograft murine model were used to examine the biologic impact of dual inhibition of both canonical and noncanonical NF-κB pathways.
We show that PBS-1086 induces potent cytotoxicity in multiple myeloma cells but not in peripheral blood mononuclear cells. PBS-1086 overcomes the proliferative and antiapoptotic effects of the bone marrow milieu, associated with inhibition of NF-κB activity. Moreover, PBS-1086 strongly enhances the cytotoxicity of bortezomib in bortezomib-resistant multiple myeloma cell lines and patient multiple myeloma cells. PBS-1086 also inhibits osteoclastogenesis through an inhibition of RANK ligand (RANKL)-induced NF-κB activation. Finally, in a xenograft model of human multiple myeloma in the bone marrow milieu, PBS-1086 shows significant in vivo anti-multiple myeloma activity and prolongs host survival, associated with apoptosis and inhibition of both NF-κB pathways in tumor cells.
Our data show that PBS-1086 is a promising dual inhibitor of the canonical and noncanonical NF-κB pathways. Our preclinical study therefore provides the framework for clinical evaluation of PBS-1086 in combination with bortezomib for the treatment of multiple myeloma and related bone lesions.

1 Bookmark
 · 
89 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of constitutive nuclear factor-κB (NF-κB) activation in Hodgkin's lymphoma tumor cells almost two decades ago was one of the first reports that directly connected deregulated NF-κB signaling to human cancer. Subsequent studies demonstrated that enhanced NF-κB signaling is a common hallmark of many lymphoid malignancies, including Hodgkin lymphoma, mucosa-associated lymphoid tissue lymphoma, diffuse large B-cell lymphoma and multiple myeloma. By inducing an anti-apoptotic and pro-proliferative gene program, NF-κB is involved in lymphoma survival and growth. Identification of somatic mutations that led to activation of oncogenes and inactivation of tumor suppressor genes in the pathway revealed that specific pathogenic mechanisms are responsible for constitutive NF-κB activation in different lymphoma entities. Thus, the identification of distinct oncogenic events is reflecting the diverse cellular origins of the different lymphomas. Further, elucidation of the mechanisms that drive NF-κB in lymphoma is of high clinical relevance as it will allow the design of target-directed precision therapy. Indeed, a number of drugs that impair constitutive NF-κB activation in lymphoid malignancies are currently in preclinical or clinical development.Oncogene advance online publication, 27 January 2014; doi:10.1038/onc.2013.565.
    Oncogene 01/2014; · 7.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First-in-class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre-clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second-generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second-generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti-proteasome therapeutics.
    Journal of Cellular and Molecular Medicine 04/2014; · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of a dysregulated NF-κB/Snail/YY1/RKIP loop was recently established in metastatic prostate cancer cells and non-Hodgkin's lymphoma; however, its involvement in multiple myeloma (MM) has yet to be investigated. Aim of the study was to investigate the role of the NF-κB/Snail/YY1/RKIP circuitry in MM and how each gene is correlated with the remaining genes of the loop. Using gene set enrichment analysis and gene neighbours analysis in data received from four datasets included in the Multiple Myeloma Genomics Portal of the Multiple Myeloma Research Consortium, we identified various enriched gene sets associated with each member of the NF-κB/Snail/YY1/RKIP circuitry. In each dataset, the 20 most co-expressed genes with the circuitry genes were isolated subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Among many, we highlighted on FNDC3B, TPD52, BBX, MBNL1 and MFAP2. Many co-expressed genes participated in the regulation of metabolic processes and nucleic acid binding, or were transcription factor binding genes and genes with metallopeptidase activity. The transcription factors FOXO4, GATA binding factor, Sp1 and AP4 most likely affect the expression of the NF-κB/Snail/YY1/RKIP circuitry genes. Computational analysis of various GEO datasets revealed elevated YY1 and RKIP levels in MM vs. the normal plasma cells, as well as elevated RKIP levels in MM vs. normal B lymphocytes. The present study highlights the relationships of the NF-κB/Snail/YY1/RKIP circuitry genes with specific cancer-related gene sets in multiple myeloma.
    Tumor Biology 01/2014; · 2.52 Impact Factor

Full-text

View
13 Downloads
Available from
Jun 5, 2014