Article

The genetics and neuropathology of Parkinson's disease.

Molecular Neuroscience Department, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London, UK.
Acta Neuropathologica (Impact Factor: 9.78). 07/2012; 124(3):325-38. DOI: 10.1007/s00401-012-1013-5
Source: PubMed

ABSTRACT There has been tremendous progress toward understanding the genetic basis of Parkinson's disease and related movement disorders. We summarize the genetic, clinical and pathological findings of autosomal dominant disease linked to mutations in SNCA, LRRK2, ATXN2, ATXN3, MAPT, GCH1, DCTN1 and VPS35. We then discuss the identification of mutations in PARK2, PARK7, PINK1, ATP13A2, FBXO7, PANK2 and PLA2G6 genes. In particular we discuss the clinical and pathological characterization of these forms of disease, where neuropathology has been important in the likely coalescence of pathways highly relevant to typical PD. In addition to the identification of the causes of monogenic forms of PD, significant progress has been made in defining genetic risk loci for PD; we discuss these here, including both risk variants at LRRK2 and GBA, in addition to discussing the results of recent genome-wide association studies and their implications for PD. Finally, we discuss the likely path of genetic discovery in PD over the coming period and the implications of these findings from a clinical and etiological perspective.

0 Followers
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the function of genes mutated in hereditary forms of Parkinson's disease yields insight into disease etiology and reveals new pathways in cell biology. Although mutations or variants in many genes increase the susceptibility to Parkinson's disease, only a handful of monogenic causes of parkinsonism have been identified. Biochemical and genetic studies reveal that the products of two genes that are mutated in autosomal recessive parkinsonism, PINK1 and Parkin, normally work together in the same pathway to govern mitochondrial quality control, bolstering previous evidence that mitochondrial damage is involved in Parkinson's disease. PINK1 accumulates on the outer membrane of damaged mitochondria, activates Parkin's E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins to trigger selective autophagy. This review covers the normal functions that PINK1 and Parkin play within cells, their molecular mechanisms of action, and the pathophysiological consequences of their loss. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 01/2015; 85(2):257-273. DOI:10.1016/j.neuron.2014.12.007 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous disorders of the central nervous system (CNS) are attributed to the selective death of distinct neuronal cell populations. Interestingly, in many of these conditions, a specific subset of neurons is extremely prone to degeneration while other, very similar neurons are less affected or even spared for many years. In Parkinson's disease (PD), the motor manifestations are primarily linked to the selective, progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). In contrast, the very similar DA neurons in the ventral tegmental area (VTA) demonstrate a much lower degree of degeneration. Elucidating the molecular mechanisms underlying the phenomenon of differential DA vulnerability in PD has proven extremely challenging. Moreover, an increasing number of studies demonstrate that considerable molecular and electrophysiologic heterogeneity exists among the DA neurons within the SNpc as well as those within the VTA, adding yet another layer of complexity to the selective DA vulnerability observed in PD. The discovery of key pathways that regulate this differential susceptibility of DA neurons to degeneration holds great potential for the discovery of novel drug targets and the development of promising neuroprotective treatment strategies. This review provides an update on the molecular basis of the differential vulnerability of midbrain DA neurons in PD and highlights the most recent developments in this field.
    Frontiers in Neuroanatomy 12/2014; 8:152. DOI:10.3389/fnana.2014.00152 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations causing genetic disorders can occur during mitotic cell division after fertilization, which is called somatic mutations. This leads to somatic mosaicism, where two or more genetically distinct cells are present in one individual. Somatic mutations are the most well studied in cancer where it plays an important role and also have been associated with some neurodegenerative disorders. The study of somatic mosaicism in Parkinson disease (PD) is only in its infancy, and a case with somatic mutation has not yet been described. However, we can speculate that a somatic mutation affecting cells in the central nervous system including substantia nigra dopaminergic neurons could lead to the development of PD through the same pathomechanisms of genetic PD even in the absence of a germ-line mutation. Theoretically, a number of genes could be candidates for genetic analysis for the presence of somatic mosaicism. Among them, SNCA and PARK2 could be the best candidates to analyze. Because analyzing brain tissues in living patients is impossible, alternative tissues could be used to indicate the genetic status of the brain. Performance of the technology is another factor to consider when analyzing the tissues.
    12/2014; 23(4):271-6. DOI:10.5607/en.2014.23.4.271