Cosmic Ray Composition and Energy Spectrum from 1-30 PeV Using the40-String Configuration of IceTop and IceCube

Astroparticle Physics (Impact Factor: 3.58). 02/2013; 42:15-32. DOI: 10.1016/j.astropartphys.2012.11.003
Source: arXiv


The mass composition of high energy cosmic rays depends on their production,
acceleration, and propagation. The study of cosmic ray composition can
therefore reveal hints of the origin of these particles. At the South Pole, the
IceCube Neutrino Observatory is capable of measuring two components of cosmic
ray air showers in coincidence: the electromagnetic component at high altitude
(2835 m) using the IceTop surface array, and the muonic component above ~1 TeV
using the IceCube array. This unique detector arrangement provides an
opportunity for precision measurements of the cosmic ray energy spectrum and
composition in the region of the knee and beyond. We present the results of a
neural network analysis technique to study the cosmic ray composition and the
energy spectrum from 1 PeV to 30 PeV using data recorded using the
40-string/40-station configuration of the IceCube Neutrino Observatory.


Available from: Samvel Ter-Antonyan
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The IceCube Observatory at the South Pole is composed of a cubic kilometer scale neutrino telescope buried beneath the icecap and a square-kilometer surface water Cherenkov tank detector array known as IceTop. The combination of the surface array with the in-ice detector allows the dominantly electromagnetic signal of air showers at the surface and their high-energy muon signal in the ice to be measured in coincidence. This ratio is known to carry information about the nuclear composition of the primary cosmic rays. This paper reviews the recent results from cosmic-ray measurements performed with IceTop/IceCube: energy spectrum, mass composition, anisotropy, search for PeV gamma sources, detection of high energy muons to probe the initial stages of the air shower development, and study of transient events using IceTop in scaler mode.
    Modern Physics Letters A 10/2012; 27(39). DOI:10.1142/S0217732312300388 · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin of the bulk of cosmic rays (CRs) observed at Earth is the topic of a century long investigation, paved with successes and failures. From the energetic point of view, supernova remnants (SNRs) remain the most plausible sources of CRs up to rigidity ? 10^6-10^7 GV. This confidence somehow resulted in the construction of a paradigm, the so-called SNR paradigm: CRs are accelerated through di?usive shock acceleration in SNRs and propagate di?ffusively in the Galaxy in an energy dependent way. Qualitative confirmation of the SNR acceleration scenario has recently been provided by gamma ray and X-ray observations. Diff?usive propagation in the Galaxy is probed observationally through measurement of the secondary to primary nuclei flux ratios (such as B/C). There are however some weak points in the paradigm, which suggest that we are probably missing some physical ingredients in our models. The theory of diff?usive shock acceleration at SNR shocks predicts spectra of accelerated particles which are systematically too hard compared with the ones inferred from gamma ray observations. Moreover, hard injection spectra indirectly imply a steep energy dependence of the diffusion coefficient in the Galaxy, which in turn leads to anisotropy larger than the observed one. Moreover recent measurements of the flux of nuclei suggest that the spectra have a break at rigidity ? 200 GV, which does not sit well with the common wisdom in acceleration and propagation. In this paper I will review these new developments and suggest some possible implications.
    Nuclear Physics B - Proceedings Supplements 11/2012; s 239–240(1). DOI:10.1016/j.nuclphysbps.2013.05.023 · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Located at the South Pole, IceCube is a particle-astrophysics observatory composed of a square-kilometer surface air shower array (IceTop) and a 1.4 km deep cubic-kilometer optical Cherenkov detector array. We review results of measurements of the cosmic ray spectrum and average mass in the energy range 1 PeV to 1 EeV.
    Advances in Space Research 01/2013; 53(10). DOI:10.1016/j.asr.2013.06.023 · 1.36 Impact Factor
Show more