Article

New insights into the mechanism of notch signalling in fibrosis.

Laboratoire d'immunologie, EA 1833, Université Paris Descartes, Sorbonne Paris-Cité, Faculté de Médecine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), France.
The Open Rheumatology Journal 01/2012; 6:96-102. DOI: 10.2174/1874312901206010096
Source: PubMed

ABSTRACT The Notch pathway is an evolutionary conserved signalling mechanism that regulates cellular fate and development in various types of cells. The full spectrum of Notch effects has been well studied over the last decade in the fields of development and embryogenesis. But only recently several studies emphasized the involvement of the Notch signalling pathway in fibrosis. This review summarizes the structure and activation of the Notch family members, and focuses on recent findings regarding the role of Notch in organ fibrogenesis, in humans and in animal models.

0 Bookmarks
 · 
157 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM) characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types-most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of non-cancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve non-specific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.
    Frontiers in Pharmacology 01/2014; 5:123.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kidney fibrosis is a common feature of chronic kidney disease (CKD). A recent study suggests that abnormal Notch signaling activation contributes to the development of renal fibrosis. However, the molecular mechanism that regulates this process remains unexplored. Unilateral ureteral obstruction (UUO) or sham-operated C57BL6 mice (aged 10 weeks) were randomly assigned to receive dibenzazepine (DBZ, 250μg/100g/d) or vehicle for 7 days. Histologic examinations were performed on the kidneys using Masson's trichrome staining and immunohistochemistry. Real-time PCR and western blot analysis were used for detection of mRNA expression and protein phosphorylation. The expression of Notch 1, 3, and 4, Notch intracellular domain (NICD), and its target genes Hes1 and HeyL were upregulated in UUO mice, while the increase in NICD protein was significantly attenuated by DBZ. After 7 days, the severity of renal fibrosis and expression of fibrotic markers, including collagen 1α1/3α1, fibronectin, and α-smooth muscle actin, were markedly increased in UUO compared with sham mice. In contrast, administration of DBZ markedly attenuated these effects. Furthermore, DBZ significantly inhibited UUO-induced expression of transforming growth factor (TGF)-β, phosphorylated Smad 2, and Smad 3. Mechanistically, Notch signaling activation in tubular epithelial cells enhanced fibroblast proliferation and activation in a coculture experiment. Our study provides evidence that Notch signaling is implicated in renal fibrogenesis. The Notch inhibitor DBZ can ameliorate this process via inhibition of the TGF-β/Smad2/3 signaling pathway, and might be a novel drug for preventing chronic kidney disease.
    The international journal of biochemistry & cell biology. 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of the Notch signaling pathway in fibroproliferative skin diseases have not been fully elucidated.
    Annals of Dermatology 06/2014; 26(3):332-7. · 0.61 Impact Factor

Full-text (2 Sources)

Download
91 Downloads
Available from
May 20, 2014