Short Report: Detection of Nipah Virus RNA in Fruit Bat (Pteropus giganteus) from India

Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia.
The American journal of tropical medicine and hygiene (Impact Factor: 2.7). 07/2012; 87(3):576-8. DOI: 10.4269/ajtmh.2012.11-0416
Source: PubMed


The study deals with the survey of different bat populations (Pteropus giganteus, Cynopterus sphinx, and Megaderma lyra) in India for highly pathogenic Nipah virus (NiV), Reston Ebola virus, and Marburg virus. Bats (n = 140) from two states in India (Maharashtra and West Bengal) were tested for IgG (serum samples) against these viruses and for virus RNAs. Only NiV RNA was detected in a liver homogenate of P. giganteus captured in Myanaguri, West Bengal. Partial sequence analysis of nucleocapsid, glycoprotein, fusion, and phosphoprotein genes showed similarity with the NiV sequences from earlier outbreaks in India. A serum sample of this bat was also positive by enzyme-linked immunosorbent assay for NiV-specific IgG. This is the first report on confirmation of Nipah viral RNA in Pteropus bat from India and suggests the possible role of this species in transmission of NiV in India.

65 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bats are being increasingly recognized as an important reservoir of zoonotic viruses of different families, including SARS coronavirus, Nipah virus, Hendra virus and Ebola virus. Several recent studies hypothesized that bats, an ancient group of flying mammals, are the major reservoir of several important RNA virus families from which other mammalian viruses of livestock and humans were derived. Although this hypothesis needs further investigation, the premise that bats carry a large number of viruses is commonly accepted. The question of whether bats have unique biological features making them ideal reservoir hosts has been the subject of several recent reviews. In this review, we will focus on the public health implications of bat derived zoonotic viral disease outbreaks, examine the drivers and risk factors of past disease outbreaks and outline research directions for better control of future disease events.
    12/2012; 3(1). DOI:10.1016/j.coviro.2012.11.006
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.
    Pathogens 04/2013; 2(2). DOI:10.3390/pathogens2020264
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nipah virus causes periodic livestock and human disease with high case fatality rate, and consequent major economic, social and psychological impacts. Fruit bats of the genus Pteropus are the natural reservoir. In this study, we used real time PCR to screen the saliva and urine of P. vampyrus from North Sumatera for Nipah virus genome. A conventional reverse transcriptase (RT-PCR) assay was used on provisionally positive samples to corroborate findings. This is the first report of Nipah virus detection in P. vampyrus in Sumatera, Indonesia.
    PLoS ONE 07/2013; 8(7):e69544. DOI:10.1371/journal.pone.0069544 · 3.23 Impact Factor
Show more

Similar Publications


65 Reads
Available from