Blood-Based Protein Biomarkers for Diagnosis of Alzheimer Disease.

Archives of neurology (Impact Factor: 7.58). 07/2012; DOI: 10.1001/archneurol.2012.1282
Source: PubMed

ABSTRACT OBJECTIVE To identify plasma biomarkers for the diagnosis of Alzheimer disease (AD). DESIGN Baseline plasma screening of 151 multiplexed analytes combined with targeted biomarker and clinical pathology data. SETTING General community-based, prospective, longitudinal study of aging. PARTICIPANTS A total of 754 healthy individuals serving as controls and 207 participants with AD from the Australian Imaging Biomarker and Lifestyle study (AIBL) cohort with identified biomarkers that were validated in 58 healthy controls and 112 individuals with AD from the Alzheimer Disease Neuroimaging Initiative (ADNI) cohort. RESULTS A biomarker panel was identified that included markers significantly increased (cortisol, pancreatic polypeptide, insulinlike growth factor binding protein 2, β2 microglobulin, vascular cell adhesion molecule 1, carcinoembryonic antigen, matrix metalloprotein 2, CD40, macrophage inflammatory protein 1α, superoxide dismutase, and homocysteine) and decreased (apolipoprotein E, epidermal growth factor receptor, hemoglobin, calcium, zinc, interleukin 17, and albumin) in AD. Cross-validated accuracy measures from the AIBL cohort reached a mean (SD) of 85% (3.0%) for sensitivity and specificity and 93% (3.0) for the area under the receiver operating characteristic curve. A second validation using the ADNI cohort attained accuracy measures of 80% (3.0%) for sensitivity and specificity and 85% (3.0) for area under the receiver operating characteristic curve. CONCLUSIONS This study identified a panel of plasma biomarkers that distinguish individuals with AD from cognitively healthy control subjects with high sensitivity and specificity. Cross-validation within the AIBL cohort and further validation within the ADNI cohort provides strong evidence that the identified biomarkers are important for AD diagnosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the major cause of dementia among the elderly. Finding blood-based biomarkers for disease diagnosis and prognosis is urgently needed. We studied protein distributions in brain tissues, cerebrospinal fluid (CSF), and blood of AD patients by using proteomics and a new proteomic method that we call "2D multiplexed Western blot" (2D mxWd). This method allows us to determine in multiple samples the electrophoretic patterns of protein isoforms with different isoelectric points. Apolipoprotein E (ApoE) displays a unique distribution of electrophoretic isoforms in the presence of AD and also a unique pattern specific to the APOE genotype. The isoelectric distribution of differentially charged ApoE isoforms was used to determine the presence of AD in a small group of samples. Further studies are needed to validate their use as predictors of disease onset and progression, and as biomarkers for determining the efficacy of therapeutic treatments.
    Alzheimer's Research and Therapy 01/2014; 6(4):43. · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal loss is a major neuropathological hallmark of Alzheimer's disease (AD). The associations between soluble Aβ oligomers and cellular components cause this neurotoxicity. The 37 kDa/67 kDa laminin receptor (LRP/LR) has recently been implicated in Aβ pathogenesis. In this study the mechanism underlying the pathological role of LRP/LR was elucidated. Försters Resonance Energy Transfer (FRET) revealed that LRP/LR and Aβ form a biologically relevant interaction. The ability of LRP/LR to form stable associations with endogenously shed Aβ was confirmed by pull down assays and Aβ-ELISAs. Antibody blockade of this association significantly lowered Aβ42 induced apoptosis. Furthermore, antibody blockade and shRNA mediated downregulation of LRP/LR significantly hampered Aβ42 internalization. These results suggest that LRP/LR is a receptor for Aβ42 internalization, mediating its endocytosis and contributing to the cytotoxicity of the neuropeptide by facilitating intra-cellular Aβ42 accumulation. These findings recommend anti-LRP/LR specific antibodies and shRNAs as potential therapeutic tools for AD treatment.
    Scientific Reports 07/2014; 4:5556. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is a progressive degenerative disorder of the brain and is the most common form of dementia. To-date no simple, inexpensive and minimally invasive procedure is available to confirm with certainty the early diagnosis of AD prior to the manifestations of symptoms characteristic of the disease. Therefore, if population screening of individuals is to be performed, more suitable, easily accessible tissues would need to be used for a diagnostic test that would identify those who exhibit cellular pathology indicative of mild cognitive impairment (MCI) and AD risk so that they can be prioritized for primary prevention. This need for minimally invasive tests could be achieved by targeting surrogate tissues, since it is now well recognized that AD is not only a disorder restricted to pathology and biomarkers within the brain. Human buccal cells for instance are accessible in a minimally invasive manner, and exhibit cytological and nuclear morphologies that may be indicative of accelerated ageing or neurodegenerative disorders such as AD. However, to our knowledge there is no review available in the literature covering the biology of buccal cells and their applications in AD biomarker research. Therefore, the aim of this review is to summarize some of the main findings of biomarkers reported for AD in peripheral tissues, with a further focus on the rationale for the use of the buccal mucosa (BM) for biomarkers of AD and the evidence to date of changes exhibited in buccal cells with AD.
    Current Alzheimer Research 06/2014; · 3.80 Impact Factor


Available from
May 20, 2014