Article

Type II NKT cells facilitate Alum-sensing and humoral immunity

1.OUHSC, 940 Stanton L. Young Blvd., BMSB 1019, Oklahoma City, OK 73104, USA. .
Journal of leukocyte biology (Impact Factor: 4.99). 07/2012; 92(4):883-93. DOI: 10.1189/jlb.0412177
Source: PubMed

ABSTRACT Alum-based adjuvants facilitate vaccine-driven humoral immunity, but their mechanism of action remains poorly understood. Herein, we report that lack of type II NKT cells is associated with intact, mature B cells but dampened humoral immunity following immunization with Alum-adsorbed T-dependent antigen. Type II NKT cells facilitated production of IL-4, IL-5, IL-10, IL-13, and antibody by LN and splenocyte cultures following Alum/antigen administration in vivo and antigen restimulation in vitro. Addition of IL-4 and IL-5 to type II NKT-deficient cultures restored in vitro antibody production. Intracellular staining revealed that Alum-primed type II NKT cells coordinated IL-4 secretion by T cells. Alum did not significantly affect CD1d expression in vivo, but addition of CD1d-blocking mAb diminished cytokine production and in vitro antibody production. Type II NKT cells therefore function as part of the Alum-sensing apparatus and in a CD1d-dependent manner, facilitate T(H)2-driven humoral immunity. This may have important consequences for understanding the mechanism of action of Alum-containing vaccines.

0 Followers
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination is by far the most effective way of preventing morbidity and mortality due to infection of the upper respiratory tract by influenza virus. Current vaccines require yearly vaccine updates as the influenza virus can escape vaccine-induced humoral immunity due to the antigenic variability of its surface antigens. In case of a pandemic, new vaccines become available too late with current vaccine practices. New technologies that allow faster production of vaccine seed strains in combination with alternative production platforms and vaccine formulations may shorten the time gap between emergence of a new influenza virus and a vaccine becoming available. Adjuvants may allow antigen-sparing, allowing more people to be vaccinated with current vaccine production capacity. Adjuvants and universal vaccines can target immune responses to more conserved influenza epitopes, which eventually will result in broader protection for a longer time. In addition, further immunological studies are needed to gain insights in the immune features that contribute to protection from influenza-related disease and mortality, allowing redefinition of correlates of protection beyond virus neutralization in vitro.
    Viruses 10/2014; 6(10):3809-3826. DOI:10.3390/v6103809 · 3.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipids presented by the MHC class I-like molecule, CD1d, are recognized by NK T (NKT) cells, which can be broadly categorized into two subsets. The well-characterized type I NKT cells express a semi-invariant TCR and can recognize both α- and β-linked glycolipids, whereas type II NKT cells are less well studied, express a relatively diverse TCR repertoire, and recognize β-linked lipids. Recent structural studies have shown a distinct mode of recognition of a self-glycolipid sulfatide bound to CD1d by a type II NKT TCR. To further characterize Ag recognition by these cells, we have used the structural data and screened other small molecules able to bind to CD1d and activate type II NKT cells. Using plate-bound CD1d and APC-based Ag presentation assay, we found that phospholipids such as lysophosphatidylcholine (LPC) can stimulate the sulfatide-reactive type II NKT hybridoma Hy19.3 in a CD1d-dependent manner. Using plasmon resonance studies, we found that this type II NKT TCR binds with CD1d-bound LPC with micromolar affinities similar to that for sulfatide. Furthermore, LPC-mediated activation of type II NKT cells leads to anergy induction in type I NKT cells and affords protection from Con A-induced hepatitis. These data indicate that, in addition to self-glycolipids, self-lysophospholipids are also recognized by type II NKT cells. Because lysophospholipids are involved during inflammation, our findings have implications for not only understanding activation of type II NKT cells in physiological settings, but also for the development of immune intervention in inflammatory diseases.
    The Journal of Immunology 09/2014; 193(9). DOI:10.4049/jimmunol.1400699 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that posttransplant alloantibody production in CD8-deficient hosts is IL-4+CD4+ T cell–dependent and IgG1 isotype-dominant. The current studies investigated the hypothesis that IL-4-producing natural killer T cells (NKT cells) contribute to maximal alloantibody production. To investigate this, alloantibody levels were examined in CD8-deficient WT, CD1d KO and Jα18 KO transplant recipients. We found that the magnitude of IgG1 alloantibody production was critically dependent on the presence of type I NKT cells, which are activated by day 1 posttransplant. Unexpectedly, type I NKT cell contribution to enhanced IgG1 alloantibody levels was interferon-γ-dependent and IL-4-independent. Cognate interactions between type I NKT and B cells alone do not stimulate alloantibody production. Instead, NKT cells appear to enhance maturation of IL-4+CD4+ T cells. To our knowledge, this is the first report to substantiate a critical role for type I NKT cells in enhancing in vivo antibody production in response to endogenous antigenic stimuli.
    American Journal of Transplantation 09/2014; 14(11). DOI:10.1111/ajt.12922 · 6.19 Impact Factor