Article

Association of epigenetic inactivation of the WRN gene with anticancer drug sensitivity in cervical cancer cells

Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan.
Oncology Reports (Impact Factor: 2.19). 07/2012; 28(4):1146-52. DOI: 10.3892/or.2012.1912
Source: PubMed

ABSTRACT The Werner (WRN) gene codes for a DNA helicase that contributes to genomic stability and has been identified as the gene responsible for progeria. Recent studies have shown reduced WRN expression due to aberrant DNA hypermethylation in cancer cells. Furthermore, WRN expression is thought to affect sensitivity to DNA topoisomerase I inhibitors in cancer therapy. In this study, we examined the relationship between aberrant DNA hypermethylation of WRN and the sensitivity of cervical cancer cells to anticancer drugs. DNA was extracted from samples from 22 patients with primary cervical cancer and 6 human cervical cancer-derived cell lines. Aberrant DNA hypermethylation was analyzed by methylation-specific PCR. WRN expression in cultured cells before and after addition of 5-aza-2-deoxycytidine, a demethylating agent, was examined using RT-PCR. The sensitivity of cells to anticancer drugs was determined using a collagen gel droplet embedded culture drug sensitivity test (CD-DST). siRNA against WRN was transfected into a cervical cancer-derived cell line with high WRN expression. Changes in drug sensitivity after silencing WRN were determined by CD-DST. Aberrant DNA hypermethylation and decreased expression of WRN were detected in 7/21 cases of primary cervical cancer and in two cervical cancer-derived cell lines. These two cell lines showed high sensitivity to CPT-11, a topoisomerase I inhibitor, but became resistant to CPT-11 after treatment with 5-aza-2-deoxycytidine. Transfection of siRNA against WRN increased the sensitivity of the cells to CPT-11. Aberrant DNA hypermethylation of WRN also increased the sensitivity of cervical cancer cells to CPT-11. Therefore, epigenetic inactivation of this gene may be a biomarker for selection of drugs for the treatment of cervical cancer. This is the first report to show a relationship between the methylation of the WRN gene and sensitivity to CPT-11 in gynecological cancers.

Download full-text

Full-text

Available from: Banno Kouji, May 03, 2014
0 Followers
 · 
191 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
    Journal of Biomolecular Screening 03/2013; 18(7). DOI:10.1177/1087057113482586 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In cancer, the overall patterns of epigenetic marks are severely distorted from the corresponding normal cell type. It is now well established that these changes can contribute to cancer development through inactivation of tumor suppressor genes and, conversely, through activation of oncogenes. Recent technological advances have enabled epigenome-wide analyses of cancers that are yielding unexpected findings. The study of cancer epigenetics holds great promise for expanding the range of therapeutic opportunities for personalized medicine. Here, we focus on DNA methylation in breast cancer and the potential implications for clinical management of patients.
    American Journal Of Pathology 07/2013; 82(4). DOI:10.1016/j.ajpath.2013.04.033 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cervical cancer is the third most common cancer worldwide, and the development of new diagnosis, prognostic, and treatment strategies is a major interest for public health. Cisplatin, in combination with external beam irradiation for locally advanced disease, or as monotherapy for recurrent/metastatic disease, has been the cornerstone of treatment for more than two decades. Other investigated cytotoxic therapies include paclitaxel, ifosfamide and topotecan, as single agents or in combination, revealing unsatisfactory results. In recent years, much effort has been made towards evaluating new drugs and developing innovative therapies to treat cervical cancer. Among the most investigated molecular targets are epidermal growth factor receptor and vascular endothelial growth factor (VEGF) signaling pathways, both playing a critical role in cervical cancer development. Studies with bevacizumab or VEGF receptor tyrosine kinase have given encouraging results in terms of clinical efficacy, without adding significant toxicity. A great number of other molecular agents targeting critical pathways in cervical malignant transformation are being evaluated in preclinical and clinical trials, reporting preliminary promising data. In the current review, we discuss novel therapeutic strategies which are being investigated for the treatment of advanced cervical cancer.
    Journal of Cancer 01/2014; 5(2):86-97. DOI:10.7150/jca.7963 · 2.64 Impact Factor
Show more