Article

Altered in vitro Proliferation of Mouse SOD1-G93A Skeletal Muscle Satellite Cells.

LAGENBIO-I3A, Aragon's Institute of Health Sciences, University of Zaragoza, Zaragoza, Spain.
Neurodegenerative Diseases (Impact Factor: 3.41). 07/2012; DOI: 10.1159/000338061
Source: PubMed

ABSTRACT Background: Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neurodegenerative disease characterized by ascending muscle weakness, atrophy and paralysis. Early muscle abnormalities that precede motor neuron loss in ALS may destabilize neuromuscular junctions, and we have previously demonstrated alterations in myogenic regulatory factor (MRF) expression in vivo and in the activation of myofiber-associated skeletal muscle satellite cells (SMSCs) in the mouse model of ALS (SOD1-G93A). Methods: To elucidate niche dependence versus cell-autonomous mutant SOD1 (mSOD1) toxicity in this model, we measured in vitro proliferation potential and MRF and cyclin gene expression in SMSC cultures derived from fast-twitch extensor digitorum longus and slow-twitch soleus muscles of SOD1-G93A mice. Results: SMSCs from early presymptomatic (p40) to terminal, semi-paralytic (p120) SOD1-G93A mice demonstrated generally lower proliferation potential compared with age-matched controls. However, induced proliferation was observed in surgically denervated wild-type animals and SOD1-G93A animals at p90, when critical denervation arises. SMSCs from fast and slow muscles were similarly affected by mSOD1 expression. Lowered proliferation rate was generally corroborated with decreased relative MRF expression levels, although this was most prominent in early age and was modulated by muscle type origin. Cyclins controlling cell proliferation did not show modifications in their mRNA levels; however, the expression of cyclin-dependent kinase inhibitor 1A (Cdkn1a), which is known to promote myoblast differentiation, was decreased in SOD1-G93A cultures. Conclusions: Our data suggest that the function of SMSCs is impaired in SOD1-G93A satellite cells from the earliest stages of the disease when no critical motor neuron loss has been described.

0 Bookmarks
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease characterized by degeneration of upper and lower motor neurons (MNs), generalized weakness and muscle atrophy. The "neurocentric" view of ALS assumes that the disease primarily affects motor neurons, while muscle alterations only represent a consequence, in the periphery, of motor neuron loss. However, this outlook was recently challenged by evidence suggesting that non-neural cells such as microglia, astrocytes, peripheral blood mononuclear cells (PBMCs) and skeletal muscle fibres participate in triggering motor neuron degeneration, and this stressed the concept that alterations in different cell types may act together to exacerbate the disease. In this review, we will summarize the most recent findings on the alterations of skeletal muscle fibres found in ALS, with particular attention to the relationship between mutant SOD1 and skeletal muscle. We will analyze changes in muscle function, in the expression of myogenic regulatory factors, and also mitochondrial dysfunction, SOD1 aggregation and proteasome activity.
    Molecular Neurobiology 11/2013; · 5.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons. Familial ALS is strongly associated to dominant mutations in the gene for Cu/Zn superoxide dismutase (SOD1). Recent evidences point to skeletal muscle as a primary target in the ALS mouse model. Wnt/PI3 K signaling pathways and epithelial-mesenchymal transition (EMT) have important roles in maintenance and repair of skeletal muscle. Wnt/PI3 K pathways and EMT gene expression profile were investigated in gastrocnemius muscle from SOD1(G93A) mouse model and age-paired wild-type control in the presymptomatic ages of 40 and 80 days aiming the early neuromuscular abnormalities that precede motor neuron death in ALS. A customized cDNA microarray platform containing 326 genes of Wnt/PI3 K and EMT was used and results revealed eight up-regulated (Loxl2, Pik4ca, Fzd9, Cul1, Ctnnd1, Snf1lk, Prkx, Dner) and nine down-regulated (Pik3c2a, Ripk4, Id2, C1qdc1, Eif2ak2, Rac3, Cds1, Inppl1, Tbl1x) genes at 40 days, and also one up-regulated (Pik3ca) and five down-regulated (Cd44, Eef2 k, Fzd2, Crebbp, Piki3r1) genes at 80 days. Also, protein-protein interaction networks grown from the differentially expressed genes of 40 and 80 days old mice have identified Grb2 and Src genes in both presymptomatic ages, thus playing a potential central role in the disease mechanisms. mRNA and protein levels for Grb2 and Src were found to be increased in 80 days old ALS mice. Gene expression changes in the skeletal muscle of transgenic ALS mice at presymptomatic periods of disease gave further evidence of early neuromuscular abnormalities that precede motor neuron death. The results were discussed in terms of initial triggering for neuronal degeneration and muscle adaptation to keep function before the onset of symptoms.
    Cellular and Molecular Neurobiology 01/2014; · 2.29 Impact Factor

Full-text

View
41 Downloads
Available from
May 16, 2014