Article

The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain.

Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 07/2012; 19(8):767-72. DOI: 10.1038/nsmb.2340
Source: PubMed

ABSTRACT Peptide macrocycles are found in many biologically active natural products. Their versatility, resistance to proteolysis and ability to traverse membranes has made them desirable molecules. Although technologies exist to synthesize such compounds, the full extent of diversity found among natural macrocycles has yet to be achieved synthetically. Cyanobactins are ribosomal peptide macrocycles encompassing an extraordinarily diverse range of ring sizes, amino acids and chemical modifications. We report the structure, biochemical characterization and initial engineering of the PatG macrocyclase domain of Prochloron sp. from the patellamide pathway that catalyzes the macrocyclization of linear peptides. The enzyme contains insertions in the subtilisin fold to allow it to recognize a three-residue signature, bind substrate in a preorganized and unusual conformation, shield an acyl-enzyme intermediate from water and catalyze peptide bond formation. The ability to macrocyclize a broad range of nonactivated substrates has wide biotechnology applications.

Full-text

Available from: James Henderson Naismith, Jun 02, 2015
0 Followers
 · 
221 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biosynthetic pathways for patellamide and related natural products have recently been studied by structural biology. These pathways produce molecules that have a complex framework and exhibit a diverse array of activity due to the variability of the amino acids that are found in them. As these molecules are difficult to synthesize chemically, exploitation of their properties has been modest. The patellamide pathway involves amino acid heterocyclization, peptide cleavage, peptide macrocyclization, heterocycle oxidation and epimerization; closely related products are also prenylated. Enzyme activities have been identified for all these transformations except epimerization, which may be spontaneous. This review highlights the recent structural and mechanistic work on amino acid heterocyclization, peptide cleavage and peptide macrocyclization. This work should help in using the enzymes to produce novel analogs of the natural products enabling an exploitation of their properties. Copyright © 2014. Published by Elsevier Ltd.
    Current Opinion in Structural Biology 11/2014; 29C:112-121. DOI:10.1016/j.sbi.2014.10.006 · 8.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patellamides are members of the cyanobactin family of ribosomally synthesized and post-translationally modified cyclic peptide natural products, many of which, including some patellamides, are biologically active. A detailed mechanistic understanding of the biosynthetic pathway would enable the construction of a biotechnological `toolkit' to make novel analogues of patellamides that are not found in nature. All but two of the protein domains involved in patellamide biosynthesis have been characterized. The two domains of unknown function (DUFs) are homologous to each other and are found at the C-termini of the multi-domain proteins PatA and PatG. The domain sequence is found in all cyanobactin-biosynthetic pathways characterized to date, implying a functional role in cyanobactin biosynthesis. Here, the crystal structure of the PatG DUF domain is reported and its binding interactions with plausible substrates are investigated.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 12/2014; 70(Pt 12):1597-603. DOI:10.1107/S2053230X1402425X · 0.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amatoxins are ribosomally encoded and posttranslationally modified peptides that account for the majority of fatal mushroom poisonings of humans. A representative amatoxin is the bicyclic octapeptide α-amanitin, formed via head-to-tail macrocyclization, which is ribosomally biosynthesized as a 35-amino acid propeptide in Amanita bisporigera and in the distantly related mushroom Galerina marginata. Although members of the prolyl oligopeptidase (POP) family of serine proteases have been proposed to play a role in α-amanitin posttranslational processing, the exact mechanistic details are not known. Here, we show that a specific POP (GmPOPB) is required for toxin maturation in G. marginata. Recombinant GmPOPB catalyzed two nonprocessive reactions: hydrolysis at an internal Pro to release the C-terminal 25-mer from the 35-mer propeptide and transpeptidation at the second Pro to produce the cyclic octamer. On the other hand, we show that GmPOPA, the putative housekeeping POP of G. marginata, behaves like a conventional POP. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Chemistry & Biology 12/2014; 21(12). DOI:10.1016/j.chembiol.2014.10.015 · 6.59 Impact Factor