Benthic community structure and biomarker responses of the clam Scrobicularia plana in a shallow tidal creek affected by fish farm effluents (Rio San Pedro, SW Spain).

UNITWIN/UNESCO/WiCoP, Physical Chemical Department, University of Cádiz, Campus de Excelencia Internacional del Mar-CEIMAR, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
Environment international (Impact Factor: 6.25). 07/2012; 47:86-98. DOI: 10.1016/j.envint.2012.06.008
Source: PubMed

ABSTRACT The effects of solid organic wastes from a marine fish farm on sediments were tested using benthic community as ecological indicators and biomarkers in native clam (Scrobicularia plana) as biochemical indicators. The benthic fauna and clam samples were collected in the intertidal sediment in October 2010 from five sites of the Rio San Pedro (RSP) creek, following a gradient of contamination from the aquaculture effluent to the control site. Numbers of species, abundance, richness and Shannon diversity were the biodiversity indicators measured in benthic fauna. Morphological and reproduction status of clams were assessed using the condition factor and gonado-somatic index, respectively. Phase I and Phase II detoxification enzymatic activities (ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST)), antioxidant enzymatic activities (glutathione peroxidase (GPX), glutathione reductase (GR)) and oxidative stress parameters (Lipid Peroxidation (LPO) and DNA strand breaks) were measured in clams' digestive gland tissues. In parallel, temperature and salinity in the adjacent water, redox potential, pH and organic matter in sediment, and dissolved oxygen in the interstitial water were measured. The results suggested that RSP showed a spatial gradient characterised by hypoxia/anoxia, reduced potential, acidic conditions and high organic enrichment in sediments at the most contaminated sites. Significant (p<0.05) decrease of biodiversity indicators were observed in the areas impacted by the aquaculture discharges. Biomarkers did not show a clear pattern and of all biochemical responses tested, GPX, DNA damage and LPO were the most sensitive ones and showed significant (p<0.05) increase in the polluted sites. Benthic biodiversity indicators were significantly (p<0.05) positively correlated with pH, redox potential and dissolved oxygen and negatively correlated with organic matter. On the contrary, antioxidant enzymatic responses (GPX) and oxidative stress parameters were significantly (p<0.05) negatively correlated with those physico-chemical parameters. It has been demonstrated that effluents from fish aquaculture activities in Río San Pedro creek may produce an alteration of physico-chemical characteristics of seabed and induce oxidative stress and DNA damage in soft-sediment species which may lead to changes of the benthic population structure and health status of the exposed organisms.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.
    Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology 05/2007; 146(4):588-600. · 2.17 Impact Factor
  • Source
    American Naturalist - AMER NATURALIST. 01/1963; 97(897).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eutrophication is one of the most severe and widespread forms of disturbance affecting coastal marine systems. Whilst there are general models of effects on benthos, such as the Pearson-Rosenberg (P-R) model, the models are descriptive rather than predictive. Here we first review the process of increased organic matter production and the ensuing sedimentation to the seafloor. It is shown that there is no simple relationship between nutrient inputs and the vertical flux of particulate organic matter (POM). In particular, episodic hydrographic events are thought to be the key factor leading to high rates of sedimentation and accompanying hypoxia. We extend an earlier review of effects of hypoxia to include organisms living in the water column. In general, fishes are more sensitive to hypoxia than crustaceans and echinoderms, which in turn are more sensitive than annelids, whilst molluscs are the least sensitive. Growth is affected at oxygen concentrations between 6.0 and 4.5 mg O-2 1(-1), other aspects of metabolism are affected at between 4 and 2 mg O-2 1(-1) and mortality occurs where concentrations are below 2.0 to 0.5 mg O-2 1(-1). Field studies, however, show that complex behavioural changes also occur as hypoxia increases, and these are described herein. The areas where hypoxia occurs are frequently areas that are stagnant or with poor water exchange. Thus again, hydrographic factors are key processes determining whether or not hypoxia and eutrophication occur. Tolerance to ammonia and hydrogen sulphide is also reviewed, as these substances are found at near zero concentrations of oxygen and are highly toxic to most organisms. However, the effects of interactions between oxygen, ammonia and hydrogen sulphide only occur below oxygen concentrations of ca. 0.5 mg O-2 1(-1), since only below this concentration are hydrogen sulphide and oxygen released into the water. Models of eutrophication and the generation of hypoxia are discussed, and in particular the P-R model is analysed. Although agreement with the model is widely reported the actual predictions of the model have rarely been tested. Our review suggests that the major effects on benthic fauna result from hypoxia rather than organic enrichment per se and suggests that the P-R model is descriptive rather than predictive. Finally, a managerial tool is proposed, based on the stages of effects of hypoxia and organic enrichment suggested by the P-R model and on an earlier study. The proposed strategy involves rapid assessment tools and indicates where more detailed surveys are needed. Managers are advised that remedial action will not produce rapid results and that recovery from eutrophication will probably take decades. Thus it is essential to detect potential hypoxia and eutrophication effects at early stages of development.
    Marine Ecology Progress Series 01/2002; 238:249-279. · 2.55 Impact Factor


Available from
May 29, 2014