Article

Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1.

College of Metallurgical Science and Engineering, Central South University, China.
Journal of hazardous materials (Impact Factor: 4.14). 07/2012; 233-234:25-32. DOI: 10.1016/j.jhazmat.2012.06.054
Source: PubMed

ABSTRACT Bioleaching of heavy metals from contaminated soil using Penicillium chrysogenum strain F1 was investigated. Batch experiments were performed to compare leaching efficiencies of heavy metals between one-step and two-step processes and to determine the transformation of heavy metal fractions before and after bioleaching. The results showed that two-step process had higher leaching efficiencies of heavy metals than one-step process. When the mass ratio of soil to culture medium containing P. chrysogenum strain F1 was 5% (w/v), 50%, 35%, 9% and 40% of Cd, Cu, Pb and Zn were removed in one-step process, respectively. The two-step process had higher removals of 63% Cd, 56% Cu, 14% Pb and 54% Zn as compared with one-step process. The results of the sequential extraction showed that the metals remaining in the soil were mainly bonded in stable fractions after bioleaching. The results of TEM and SEM showed that during bioleaching process, although the mycelium of P. chrysogenum was broken into fragments, no damage was obviously observed on the surface of the living cell except for thinner cell wall, smaller vacuoles and concentrated cytoplasm. The result implied that P. chrysogenum strain F1 can be used to remove heavy metals from polluted soil.

1 Bookmark
 · 
130 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vegetation is critical to stabilize and remediate mine tailing sites, but plant growth is often poor due to toxicity from heavy metal(loid)s (HMs). A non-symbiotic endophytic fungus, Trichoderma sp. PDR1-7, isolated from Pb-contaminated mine tailing soil, exhibited both high tolerance to HMs and desirable plant growth-promoting characteristics. PDR1-7 promoted HM solubilization in mine tailing soil and removed significant amounts of Pb and other HMs from liquid media containing single and multiple metals. Pb removal efficiency increased with initial pH from 4 to 6 and with Pb concentration from 100 to 125mgL(-1). Inoculating soil with PDR1-7 significantly increased nutrient availability and seedling growth, chlorophyll and protein contents, as well as antioxidative enzyme (superoxide dismutase) activity. A decrease in malondialdehyde indicated less oxidative stress. HM concentrations were much higher in Pinus sylvestris roots when PDR1-7 was present. These observations suggest the utility of Trichoderma sp. PDR1-7 for pine reforestation and phytoremediation of Pb-contaminated mine soil.
    Science of The Total Environment 02/2014; 476-477C:561-567. · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Penicillium chrysogenum has been used in producing penicillin and derived beta-lactam antibiotics for many years. Although the genome of the mutant strain P. chrysogenum Wisconsin 54-1255 has already been sequenced, the versatility and genetic diversity of this species still needs to be intensively studied. In this study, the genome of the wild-type P. chrysogenum strain KF-25, which has high activity against Ustilaginoidea virens, was sequenced and characterized. The genome of KF-25 was about 29.9 Mb in size and contained 9,804 putative open reading frames (orfs). Thirteen genes were predicted to encode two-component system proteins, of which six were putatively involved in osmolarity adaption. There were 33 putative secondary metabolism pathways and numerous genes that were essential in metabolite biosynthesis. Several P. chrysogenum virus untranslated region sequences were found in the KF-25 genome, suggesting that there might be a relationship between the virus and P. chrysogenum in evolution. Comparative genome analysis showed that the genomes of KF-25 and Wisconsin 54-1255 were highly similar, except that KF-25 was 2.3 Mb smaller. Three hundred and fifty-five KF-25 specific genes were found and the biological functions of the proteins encoded by these genes were mainly unknown (232, representing 65%), except for some orfs encoding proteins with predicted functions in transport, metabolism, and signal transduction. Numerous KF-25-specific genes were found to be associated with the pathogenicity and virulence of the strains, which were identical to those of wild-type P. chrysogenum NRRL 1951. Genome sequencing and comparative analysis are helpful in further understanding the biology, evolution, and environment adaption of P. chrysogenum, and provide a new tool for identifying further functional metabolites.
    BMC Genomics 02/2014; 15(1):144. · 4.40 Impact Factor