Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons.

Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
Neuron (Impact Factor: 15.77). 07/2012; 75(1):58-64. DOI: 10.1016/j.neuron.2012.04.038
Source: PubMed

ABSTRACT Striatal dopamine plays key roles in our normal and pathological goal-directed actions. To understand dopamine function, much attention has focused on how midbrain dopamine neurons modulate their firing patterns. However, we identify a presynaptic mechanism that triggers dopamine release directly, bypassing activity in dopamine neurons. We paired electrophysiological recordings of striatal channelrhodopsin2-expressing cholinergic interneurons with simultaneous detection of dopamine release at carbon-fiber microelectrodes in striatal slices. We reveal that activation of cholinergic interneurons by light flashes that cause only single action potentials in neurons from a small population triggers dopamine release via activation of nicotinic receptors on dopamine axons. This event overrides ascending activity from dopamine neurons and, furthermore, is reproduced by activating ChR2-expressing thalamostriatal inputs, which synchronize cholinergic interneurons in vivo. These findings indicate that synchronized activity in cholinergic interneurons directly generates striatal dopamine signals whose functions will extend beyond those encoded by dopamine neuron activity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.
    Neuron 03/2014; · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Huntington's disease (HD) is an inherited neurodegenerative disorder of movement, mood and cognition, caused by a polyglutamine expansion in the huntingtin (Htt) protein. Genetic mouse models of HD, along with improved imaging techniques in humans at risk of, or affected by, HD, have advanced understanding of the cellular and/or molecular mechanisms underlying its pathogenesis. The striatum begins to degenerate before other brain areas, and altered activity at corticostriatal synapses contributes to an imbalance in survival versus death signaling pathways in this brain region. Striatal projection neurons of the indirect pathway are most vulnerable, and their dysfunction contributes to motor symptoms at early stages of the disease. Mutant Htt expression changes striatal excitatory synaptic activity by decreasing glutamate uptake and increasing signaling at N-methyl-D-aspartate receptors (NMDAR). A variety of studies indicate that reduced brain-derived neurotrophic factor (BDNF) transcription, transport and signaling contribute importantly to striatal neuronal dysfunction and degeneration in HD. Striatal dopamine and endocannabinoid signaling are also altered and progressively become dysfunctional. Changes at striatal neurons vary with the stage of disease and clinical symptoms. Therapeutics targeting multiple neurotransmitter signaling systems could support physiological synaptic function and delay disease onset.
    Drug discovery today 03/2014; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Preclinical studies suggest that a diversity of nicotinic acetylcholine receptors (nAChRs) with different sensitivities to nicotine may contribute to tobacco addiction. Using rodent intravenous nicotine self-administration as a preclinical model with good predictive validity for therapeutic efficacy for tobacco cessation, investigators have identified heteromeric α6β2* and homomeric α7 nAChRs as promising novel therapeutic targets to promote smoking abstinence (*denotes possible assembly with other subunits). The data suggest that diverse strategies that target these subclasses of nAChRs, namely inhibition of α6β2* nAChRs and stimulation of α7 nAChRs, will support tobacco cessation. α6β2* nAChRs, members of the high-affinity family of β2* nAChRs, function similarly to α4β2* nAChRs, the primary target of the FDA-approved drug varenicline, but have a much more selective neuroanatomical pattern of expression in catecholaminergic nuclei. Although activation of β2* nAChRs facilitates nicotine self-administration, stimulation of α7 nAChRs appears to negatively modulate both nicotine reinforcement and β2* nAChR function in the mesolimbic dopamine system. Although challenges and caveats must be considered in the development of therapeutics that target these nAChR subpopulations, an accumulation of data suggests that α7 nAChR agonists, partial agonists, or positive allosteric modulators and α6β2* nAChR antagonists, partial agonists, or negative allosteric modulators may prove to be effective therapeutics for tobacco cessation.
    Annals of the New York Academy of Sciences 04/2014; · 4.38 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014